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Abstract
Uropathogenic Escherichia coli (UPEC) is a nosocomial

pathogen associated with urinary tract infections and biofilm for-
mation, which contributes to antibiotic resistance. Discovering
potent antibacterial agents is crucial. This study aimed to assess
the antibacterial and antibiofilm effects of gold and silver
nanoparticles on UPEC using Scanning Electron Microscopy
(SEM). UPEC biofilms were cultivated on nitrocellulose mem-
branes for 48 hours at 37°C, then treated with gold nanoparticles
(50 ppm and 100 ppm) and silver nanoparticles (50 ppm and 100
ppm) for another 48 hours. Antibacterial and antibiofilm activities
were evaluated through cell density and SEM analysis. SEM
revealed lower cell density, reduced biofilm formation, and altered
cell morphology with rough, wrinkled surfaces after nanoparticle
treatment. In conclusion, gold and silver nanoparticles exhibit
antibacterial and antibiofilm properties, as observed in SEM anal-
ysis. SEM is a valuable tool for studying the antimicrobial effects
of nano gold and silver on bacterial cell morphology and biofilm
populations.

Introduction
Urinary tract infections (UTIs) affect approximately 150 mil-

lion people annually worldwide, leading to significant healthcare
expenditures. UTIs are the most prevalent bacterial infections and
are considered a critical health issue, following respiratory and
digestive tract infections.1,2 These infections are more common in
women due to factors such as fecal flora contamination, the short-
er female urethra, and pregnancy. UTIs affect individuals across
various age groups, including neonates, young women, infants,
children, and older men.3 Escherichia coli (E. coli) is the predom-
inant pathogen, causing over 80-90% of community-acquired
UTIs and 30-50% of hospital-acquired UTIs.4,5 Uropathogenic
Escherichia coli (UPEC) is a nosocomial pathogen associated
with UTIs. UPEC utilizes various cellular appendages, including
fimbriae and pili, to colonize and adhere to the bladder, forming
biofilm-like bacterial communities. These biofilms play a crucial
role in sustaining UPEC’s survival and evading the host’s immune
response.6,7 The ability to adhere to epithelial cells, resist urine
flow, and form biofilms are key factors that make UPEC the pri-
mary cause of UTIs in humans.8

Biofilms are estimated to be responsible for about 65% of
nosocomial infections and 80% of all microbial infections.9 These
structured microbial communities, enveloped in an extracellular
matrix (ECM), adhere to various surfaces. Biofilm-associated
cells exhibit distinct phenotypic characteristics compared to
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planktonic or motile cells. Notably, biofilms exhibit significantly
higher resistance to antimicrobial agents, with microbial biofilms
formed through the attachment of bacteria using a secreted poly-
mer matrix. The primary constituents of this matrix include extra-
cellular DNA, proteins, and polysaccharides.10,11 Biofilm-embed-
ded cells generally display greater tolerance to antibiotics and the
host’s immune system, with biofilm resistance to antibiotics being
100-1000 times higher than planktonic cells.12

The increasing prevalence of antibiotic-resistant bacteria is a
global concern, as highlighted by the World Health Organization.
Moreover, the limited solubility, stability, and adverse side effects
associated with current antibacterial therapies have prompted
researchers to seek innovative strategies to combat these resilient
microbes.13,14 This has led to a growing demand for new antibiotic
delivery systems. Nanotechnology, with its advantageous physico-
chemical properties, drug-targeting efficiency, enhanced absorp-
tion, and biodistribution, has gained significant attention.15

Antibacterial research is a thriving field within nanomedicine,
aimed at meeting drug delivery requirements, reducing antibiotic
concentrations, and curbing drug resistance among pathogenic bac-
teria.16 Numerous studies have demonstrated the antibacterial and
antibiofilm activities of gold and silver nanoparticles against antibi-
otic-resistant bacteria. For instance, gold nanoparticles (AuNPs)
have shown superior antibacterial potential compared to crude
ethanol extracts of Digera muricata against various drug-resistant
bacteria, including Vibrio cholera, Staphylococcus pyrogen,
Klebsiella, Citrobacter, and Enterobacter.17,18 Similarly, silver
nanoparticles (AgNPs) derived from Ferula ovina Boiss (FOB)
extracts exhibited effective antibacterial activity against both Gram-
positive (Staphylococcus aureus and Bacillus cereus) and Gram-
negative (Salmonella typhimurium and Escherichia coli) species
using the disk diffusion method.19 Ginger AgNPs demonstrated
potent antibacterial and anti-adherent activity against biofilm-asso-
ciated enterococcal isolates.20 Furthermore, AgNPs exhibited sig-
nificant dose-dependent antibiofilm activity, reducing biofilm for-
mation at concentrations of 20 and 10 g/ml. When exposed to 20
g/ml of AgNPs, S. pseudintermedius displayed an uneven biofilm
surface, indicating biofilm aggregation.21

Regrettably, previous study did not investigate cellular mor-
phology changes to explain alterations in cell surface structures and
biofilm visualization. Scanning electron microscopy (SEM) is a
valuable tool for visualizing biofilms and providing accurate
descriptions of biofilm morphology. Comparative analyses, such as
evaluating the anti-biofilm effects of treatments, are highly useful
because SEM imaging results strongly correlate with findings from
other analytical methods. SEM micrographs have been employed to
observe changes in the bacterial plasma membrane of drug-resistant
S. aureus and P. aeruginosa cells following treatment with
Macropin, a novel antimicrobial agent.22 The aimed of this study
was to evaluate the antibacterial and antibiofilm effects of gold and
silver nanoparticles against UPEC through SEM analysis.

Materials and Methods

Bacterial isolates and nanoparticles (gold and sil-
ver)

The UPEC strain used in this study was obtained from a previ-
ous isolation study.23,24 The research indicates that this particular
UPEC strain is capable of forming biofilms, as determined by the
microtiter plate method. The bacterial strains were cultured on

Eosin Methylene Blue (EMB) agar at 37°C for two days. This spe-
cific strain was originally isolated from patients suffering from
UTIs and subsequently processed at the Gastroenteritis and
Salmonellosis laboratory, Institute of Tropical Disease, Airlangga
University, Surabaya, Indonesia. The gold and silver nanoparticles
used in this study were provided as finished products by the
Nanotechnology Laboratory at Diponegoro University.25

Preparation of UPEC inoculum 
The UPEC strain was initially grown on nutrient agar (NA)

medium for 24 hours at 37°C. A subculture of the UPEC was then
cultivated on Luria Bertani (LB) medium for an additional 24
hours at 37°C. Following incubation, the culture was centrifuged
at 5000 rpm for 5 minutes. The supernatant was subsequently
resuspended in 0.9% NaCl and adjusted to an optical density
(OD490) of 0.5, equivalent to approximately 108 CFU/mL. This pre-
pared inoculum was used in each treatment. The gold and silver
nanoparticles were sourced from the Nanotechnology Laboratory
at Diponegoro University.
Biofilm analysis of nitrocellulose membrane using
SEM

As previously research finding described,26 the UPEC inocu-
lum was applied to a nitrocellulose membrane and allowed to grow
for 48 hours. The cultures were incubated at 37°C. Following the
biofilm formation, it was treated with gold nanoparticles (50 ppm
and 100 ppm) and silver nanoparticles (50 ppm and 100 ppm),
respectively, and incubated for an additional 48 hours at 37°C. The
processed biofilm was then dried using an oven at a temperature of
36-37°C for 12 hours. Dry membranes were dehydrated by immer-
sion in ethanol with varying concentrations: 50% for 10 minutes,
70% for 10 minutes, and 96% for 20 minutes. The process was
completed by coating the samples with gold, making them ready
for analysis using a SEM (FEI Inspect S50). Antibacterial activity
was assessed by evaluating cell density, while antibiofilm activity
was analyzed descriptively by examining the appearance of the
slime covering the cell population in SEM images. 

Results
Figure 1 displays a representative image of UPEC bacterial

cells undergoing growth and biofilm formation on a nitrocellulose
membrane (A-B) in the negative control, and with the addition of
the antibiotic Chloramphenicol (C-D) as a positive control after 24
hours of incubation. In Figure 1A, the cell density is high, with cell
colonies (lighter color) evenly covering the surface of the nitrocel-
lulose membrane (darker color). The cells appear intact and main-
tain a smooth surface, indicating that the cell membranes are not
contracted, and the cell morphology remains undistorted. The
biofilm formation is evident as a slimy layer, reducing the visibility
of elliptical cell shapes, causing bacterial cells to cluster. In Figure
1B, the cell density is significantly lower, with cell colonies
(lighter color) visible over a smaller portion of the nitrocellulose
membrane (darker color). The biofilm formed is less pronounced,
enabling the elliptical cell shapes to be more discernible, and the
bacterial cells show a tendency to remain separate.

Figure 2 depicts a representative image of UPEC bacterial cells
exposed to gold nanoparticles at concentrations of 50 ppm (B-C) and
100 ppm (E-F) after 24 hours of incubation. In Figure 2B, the cell
density is lower in comparison to the control (Figure 2A). While the
growth of cell colonies is still generally evenly distributed across the

[page 84]                                                [Healthcare in Low-resource Settings 2023; 11:11748]

                                           Transforming Healthcare in Low-Resource Settings: a Multidisciplinary Approach Towards Sustainable Solutions

Non
-co

mmerc
ial

 us
e o

nly



                                                                [Healthcare in Low-resource Settings 2023; 11:11748]                                               [page 85]

Transforming Healthcare in Low-Resource Settings: a Multidisciplinary Approach Towards Sustainable Solutions

Figure 1. Scanning electron microscopic analysis of biofilm structure. SEM images of biofilm formed on nitrocellulose membrane after
24 h of incubation. (A) Negative control in 10.000 x, (B) Negative control in 20.000 x, (C) Positive control in 10.000 x, (D) Positive con-
trol in 20.000 x. 

Figure 2. Scanning electron microscopic analysis of biofilm structure. SEM images of biofilm formed on nitrocellulose membrane treated
with gold nanoparticle after 24 h of incubation. (A) Negative control in 10.000 x; (B) treated with 50 ppm in 10.000 x; (C) treated with
50 ppm in 20.000 x; (D) treated with 100 ppm in 10.000 x; (E) treated with 100 ppm in 20.000 x; and (F) Positive control in 10.000 x. 
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membrane surface, the formed biofilm is still visible. However,
noticeable alterations in morphology and cell surface are observed.
The cells appear intact and maintain a rough and wrinkled surface,
suggesting contracted cell membranes and distorted cell morphology
(Figure 2C). In Figure 2D-E, the cell density is notably lower, and
the biofilm formed is significantly reduced, causing bacterial cells to
fragment. The cells remain intact and retain a rough and wrinkled
surface, indicating membrane structure damage.

Figure 3, which presents results similar to those in Figure 2,
demonstrates the response of UPEC bacteria when exposed to sil-
ver nanoparticles at concentrations of 50 ppm (B-C) and 100 ppm
(E-F) after 24 hours of incubation. In Figure 3B, the cell density is
lower compared to the control (Figure 2A). The growth of cell
colonies is still evenly distributed across the membrane surface.
The biofilm is still apparent, yet noticeable alterations in morphol-
ogy and cell surface are observed. Cells maintain their integrity but
exhibit a rough and wrinkled surface, indicative of contracted cell
membranes and distorted cell morphology (Figure 3C). In Figure
3D-E, the cell density is considerably lower, and the biofilm
formed is substantially reduced, causing bacterial cells to frag-
ment. The cells appear intact with a rough and wrinkled surface,
highlighting damage to the membrane structure.

Discussion
Nanotechnology has emerged as a significant and increasingly

intriguing field of research over the last three decades. Its applica-
tions span various sectors, with substantial focus on the medical

field, encompassing diagnostics, therapeutic tools, and biomedical
research. This amalgamation of nanotechnology with the realm of
human health is referred to as nanomedicine.27 Nanomaterials have
demonstrated considerable potential in revitalizing the antibacteri-
al activity of conventional antibiotics through mechanisms that
include optimizing pharmacokinetics, enhancing antibiotic inter-
nalization, disrupting bacterial metabolism, increasing biofilm
penetration, and modifying the biofilm microenvironment.28 The
amalgamation of nanotechnology and antibiotics presents the most
promising strategy for combating bacterial resistance to antibi-
otics.29 Moreover, emerging antimicrobial nanomaterials are
evolving into nanomedicines, wielding a wide-ranging impact on
biomedical applications, encompassing targeting, imaging, thera-
py, and beyond.30

Numerous studies have showcased the antibacterial efficacy of
gold and silver nanoparticles against both Gram-positive and
Gram-negative bacteria. For instance, GCL AgNPs exhibited a sig-
nificant inhibition zone, with a diameter of 12.2 mm, against S.
enterica, followed by an 11.8 mm diameter zone against P. aerug-
inosa.31 Green-synthesized silver nanoparticles exhibited potent
activity against foodborne pathogenic bacteria and displayed the
potential to combat Gram-negative and Gram-positive bacteria.32

Furthermore, the antibacterial potency of synthesized BV@AgNPs
was examined against seven clinically isolated multidrug-resistant
bacteria. The Minimum Inhibitory Concentration (MIC) values of
Berberis vulgaris (BV)@AgNPs against various bacteria were
established, revealing their high antibacterial activity.33 The appli-
cation of AuNPs extends to diverse fields, including therapy,
medicine, and pharmaceutical.35

Studies have also demonstrated the antibiofilm properties of
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Figure 3. Scanning electron microscopic analysis of biofilm structure. SEM images of biofilm formed on nitrocellulose membrane treated
with silver nanoparticle after 24 h of incubation. (A) Negative control in 10.000 x; (B) treated with 50 ppm in 10.000 x; (C) treated with
50 ppm in 20.000 x; (D) treated with 100 ppm in 10.000 x ; (E) treated with 100 ppm in 20.000 x; and (F) Positive control in 10.000 x.  
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gold and silver nanoparticles against both Gram-positive and
Gram-negative bacteria, shedding light on economical methods of
AgNP production with specific properties to target the growth
modes of pathogenic C. Albicans.36 These findings underscore the
safety and effectiveness of AgNPs against MDR K. Pneumoniae.37

The precise mechanisms underlying the antibacterial activity of
nanoparticles are not yet fully understood, but it is believed to be
attributed to one or a combination of mechanisms, such as the pro-
duction of reactive oxygen species (ROS), the release of toxic ions,
and the direct interaction of deleterious particles with cell mem-
branes.38 Direct contact may induce stressful stimuli through elec-
trostatic interactions between nanoparticles and bacterial cell sur-
faces, leading to ROS production and bacterial cell demise.39 The
disruption of the cell membrane, causing intracellular content leak-
age, is another facet of the antibacterial activity of nanoparticles.
It’s worth noting that the antibacterial activity of NPs varies based
on the cell composition of specific bacteria; Gram-positives are
more susceptible to the antimicrobial action of ZnO due to differ-
ences in cell wall thickness and other components.16 The overall
mechanical properties of bacteria are influenced by the character-
istics of their cell envelope, including its integrity, and various fac-
tors like natural lytic elements. Biochemical composition, confor-
mational properties, and biomolecule density in the cell envelope
play vital roles in determining bacterial elasticity, with the peptido-
glycan layer prominently impacting cell elasticity.40

TC-AuNPs demonstrated a dose-dependent reduction in the
ability of P. aeruginosa to form biofilms, as revealed by SEM anal-
ysis. A higher concentration of nanoparticles was associated with a
decreased number of biofilm-forming cells, indicating reduced
adhesion and colonization on the surface. However, it is important
to note the inherent limitations of SEM analysis, such as chal-
lenges in detecting extracellular polymeric substances (EPS) and
reductions in total cell volume and architecture due to SEM’s
dehydration process.41 The biological impact of AgNPs relies on
several mechanisms, including binding to the cell wall, which
alters permeability. For example, in studies on Gram-negative bac-
teria like E. coli and P. aeruginosa, AgNPs neutralized the bacteri-
al surface charge, affecting membrane permeability. Scanning and
transmission electron microscopy demonstrated that AgNPs could
create holes in the cell wall, leading to AgNP accumulation.42 For
a more comprehensive exploration of the antibacterial mechanism
and bacterial morphology changes, SEM was employed to visual-
ize S. aureus and E. coli cells. The study yielded results consistent
with previous findings.43 Prior to treatment, bacterial cells exhibit-
ed smooth, intact membranes and normal morphology. After expo-
sure to AgNPs, cells displayed deformities, disorganization, and
surface cavities. The NPs adhered to the cell surface due to elec-
trostatic attraction between the bacterial cell surface and the NPs.
Aggregation of NPs was more pronounced and rapid in E. coli,
potentially due to differences in cell wall composition between
Gram-positive and Gram-negative bacteria. The outcome was the
disruption of the outer membrane and deformities in cellular struc-
tures, leading to penetration into bacterial cells and interference
with essential functions.44

Biogenic AgNPs demonstrated the potential to inhibit the
growth of pathogens, particularly well-structured bacterial
biofilms like UPEC. The differences in biofilm structure among
bacterial species and the physicochemical properties of AgNPs are
significant factors affecting the efficacy of their antibiofilm activ-
ity. UPEC formed planktonic, preformed, and mature biofilms,
suggesting that bacterial aggregation and physiology play pivotal
roles in determining the mechanisms behind AgNPs’ antibacterial
activity. These mechanisms may involve increased oxidative stress

resulting from intracellular Ag+ ion production, changes in mem-
brane potential and respiratory chain function, and interactions
with DNA and regulatory proteins.44 Biofilm formation is a multi-
faceted microbial process involving distinct developmental stages
specific to different bacterial types.45 These biofilms are held
together by extracellular polysaccharides, proteins, and nucleic
acids, and biofilm development in E. coli serves a crucial role in
disease causation and induction. Biofilm formation is a complex
process with a marked structure that aids in the storage of antimi-
crobial peptides, reducing corrosion. Residual bacterial biofilms
pose a significant health risk, characterized by their resilience to
treatment and potential for nosocomial transmission. Thus, the
exploration of natural molecules to address these substantial chal-
lenges, and the ability of antibacterial agents to deter biofilm for-
mation or destruction, remains an area of great importance.46

Conclusions
This study demonstrates the antibacterial and antibiofilm activ-

ities of gold and silver nanoparticles, as evident from the SEM
analysis. SEM proves to be an invaluable tool for in-depth investi-
gations into the antimicrobial properties of nano gold and silver on
bacterial cell morphology and biofilm populations. SEM can serve
as an essential tool for assessing the efficacy of antibiotic and
antibiofilm agents in microbial infections. Future research may
explore other analytical methods, including Confocal Laser
Scanning Microscopy (CLSM) and Transmission Electron
Microscopy (TEM).
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