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Abstract 

The nonlinear trimodal regression analysis (NTRA) method based on radiodensitometric CT 

images distributions was developed for the quantitative characterization of soft tissue changes 

according to the lower extremity function of elderly subjects. In this regard, the NTRA method 

defines 11 subject-specific soft tissue parameters and has illustrated high sensitivity to changes 

in skeletal muscle form and function. The present work further explores the use of these 11 

NTRA parameters in the construction of a machine learning (ML) system to predict body mass 

index and isometric leg strength using tree-based regression algorithms. Results obtained from 

these models demonstrate that when using an ML approach, these soft tissue features have a 

significant predictive value for these physiological parameters. These results further support the 

use of NTRA-based ML predictive assessment and support the future investigation of other 

physiological parameters and comorbidities. 
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 Muscle deterioration in elderly individuals is 

commonly characterized by the loss of muscle strength 

and lean tissue mass, along with the concomitant 

replacement of lean tissue with intermuscular and 

intramyocellular adipose tissue. These phenomena have 

been consistently implicated as independent mortality 

risks in aging individuals. The incidence of muscle 

degeneration in aging, commonly referred to as 

sarcopenia, significantly affects the quality of life and 

physical activity of aging individuals.1-4 Artificial 

intelligence (AI)technologies, particularly those utilizing 

machine learning (ML) algorithms, are becoming 

increasing used in healthcare data applications.5-6 The 

increased availability of healthcare data and the 

continued development of big data analytics methods has 

driven the success of ML modelling in many quantitative 

fields, such as medical image processing or predictive 

system development, as well as other specialties such as 

neurology, cardiology, and oncology.7-10 Mid-thigh 

computed tomography (CT) images from the AGES 

dataset have been used to quantitatively characterize 

subject-specific changes in soft tissue using a novel 

method known as Nonlinear Trimodal Regression 

Analysis (NTRA). The NTRA method works by 

generating soft tissue regression profiles described by 11 

unique NTRA model parameters. The utility of these 

parameters in quantifying differences in fat, lean muscle, 

and loose connective tissue was first explored in 

comparing young, aging, and pathological subjects.11-13 

Results from this work illustrated the sensitivity of 

NTRA parameters to changes in soft tissue and suggested 

the employment of this method in the context of a larger 

CT image database. The Age Gene/Environment 

Susceptibility Study (AGES-Reykjavík) is an Icelandic 

dataset designed to examine risk factors and 

gene/environment interactions in relation to disease and 

disability in aging people. This dataset was assembled 

using 3,152 volunteers from 66-92 years of age and 

contains more than 10 thousand features obtained from 

two separate time points separated by 5 years. The 

AGES-Reykjavík dataset thereby presents a unique 

opportunity for the employment of big data analytics 

methods such as ML modelling.14 As ML algorithms 
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have illustrated strong predictive value in the regression 

of body mass index (BMI)15 and isometric leg strength 

(ISO), the present study sought to demonstrate their 

prediction using NTRA parameters obtained from CT 

mid-femur cross-sections in the AGES-Reykjavík 

dataset. Results from this work further solidify the 

predictive power of NTRA parameters using BMI and 

ISO as test parameters. The methods reported here may 

be useful in prediction studies of cardiocirculatory,16 and 

mobility diseases. 

Materials and Methods 

Database & NTRA Parameters  

AGES-Reykjavík database is composed of two 

measurement time points separated by approximately 

five years (AGES-I and AGES-II, respectively). These 

two datasets contain the same features using the same 

subjects; as such, assessing each subject independently 

yields a total subject population of 6,314. From these 

data, subject BMI [kg/m2] and ISO [N] were extracted, 

and the aforementioned 11 NTRA parameters were 

obtained from mid-femur CT scans, as described by 

Edmunds et al.12 The NTRA method begins by defining 

radiodensitometric absorption distributions from CT 

number values of summed pixels in each CT slice. This 

process involves the standardized linear transformation 

of CT number to Hounsfield units (HU), according to the 

following expression:  

𝐻𝑈 = 𝐶𝑇 ×  2,26625 − 190 

Next, soft tissue HU values (across the range of -200 to 

200 HU) were segmented into 128 bins, in accordance 

with typical quantitative CT assessment protocols.17HU 

histograms from this binning procedure were then 

smoothed to define probability density functions (PDF) 

for each histogram. Each PDF was then exported for 

NTRA regression analysis. As a form of modified 

nonlinear regression analysis, the NTRA method 

computationally describes each HU distribution as a 

quasi-probability density function containing three 

Gaussian distributions: one standard (non-skewed) and 

two skewed: 

∑ 𝜑(𝑥, 𝑁𝑖 , 𝜇𝑖 , 𝜇𝑖 , 𝛼𝑖) = ∑
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where N is the distribution amplitude,  is the peak 

location,  is the distribution width, and  is its 

skewness. These parameters are evaluated iteratively at 

each CT bin, x, using a modified reduced generalized 

gradient algorithm. Here, it is important to note the 

assumption that soft tissue can be optimally defined as a 

trimodal PDF consisting of three unique superimposed 

tissue types: fat (i=1) [-200 to -10 HU], loose connective 

tissue (i=2) [-9 to 40 HU], and lean muscle (i=3) [41 to 

200 HU]. The central connective tissue is assumed to be 

non-skewed, while fat and muscle are described by, 

respectively, a positive and negative skewness. This 

method ultimately yields 11 patient-specific parameters: 

four that describe intermuscular and intramyocellular 

fat, four that describe lean muscle, and three that 

describe water-equivalent loose connective tissue 

(Figure 1). 

Machine Learning Methodology  

Tree-Based algorithms are considered for ML regression 

analysis; in particular, only ensemble learning forms of 

the decision tree are employed. This study compares four 

of these algorithms: random forest (RF),18 EXTRA Tree 

(EX-T),19 AdaBoosting (ADA-B,)20 and gradient-

boosting (GRAD-B).21 Python (PY) was used as a coding 

language along with the relative ML library Scikit-Learn 

(SL).22 To assess the performances of each prediction, the 

coefficient of determination (R2) was considered.  K-fold 

cross-validation was used to visualize all possible R2 

results using 8, 12, 16, or 18 folds. To obtain the best 

results, many different combinations of k-fold divisions 

and the four tree-based ML algorithms were tested, using 

the 11 NTRA parameters as features from combining the 

two AGES-Reykjavík databases (AGES I+II). As an 

example, using the NTRA features with a k-fold division 

of 12 sets with the GRAD-B algorithm resulted in12 total 

R2 values obtained for comparison. 

Results and Discussion 

Table 1 contains the mean and max R2 values for BMI 

classification comparing the four ML algorithms, with all 

combinations of feature selections and k-fold divisions 

shown. The highest R2 of 0.8305 was obtained using the 

GRAD-B algorithm with 200 estimators combined with 

NTRA features and a k-fold of 16. From regression, the 

most important NTRA parameters were connective and 

fat amplitudes: these always accounted for more than 

50% of the total feature importance. Table 2 shows the 

R2 results from ISO regression. The maximum mean R2 

value was obtained from GRAD-B (0.536), but the 

greatest maximum R2 value (0.614) resulted from the EX-

T algorithm. Muscle amplitude accounted for nearly 50% 

of the total feature importance, while all three connective 

 
 

Fig 1. The 11 NTRA parameters represented on 

their three respective PDF’s. N defines the 

distribution amplitude, μ is the peak 

location, σ is the distribution width, and α 

is the distribution’s skewness. 
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tissue parameters – particularly the location – also 

yielded high predictive value. These results strengthen 

those achieved with BMI classification: connective tissue 

is significant as a predictor and should be considered as 

a main feature for further soft tissue investigations. 

The present study illustrates excellent results in using 

NTRA parameters to classify BMI and ISO in aging 

subjects. In particular, tree-based ML algorithms gave 

the best results, but future exploration of other ML 

algorithms should be done to confirm and/or extend the 

results achieved here. The feature importance results for 

BMI and ISO are particularly relevant: those obtained 

from the three connective tissue parameters deserve 

additional discussion. Much importance is typically 

given to the dimetric comparison of muscle and fat tissue 

in CT scan analyses, but the present results strongly 

suggest that soft tissue assessment and predictive 

analysis should additionally consider water-equivalent 

loose connective tissue, which may actually yield the 

strongest predictive capacity in some applications, as 

evidenced by their high relative feature importance here 

for BMI and ISO.  

The use of NTRA parameters as predictive features for 

aging subjects should be extended to other physiological 

measurements in future work exploring the AGES-

Reykjavík database. Further investigation of the 

connections between these parameters and their related 

risk factors could further extend the field of translational 

myology into the discussion of sarcopenic muscle 

degeneration and its downstream effects on aging health. 

The present study provides an original approach to study 

the correlation between physiological parameters such as 

BMI and ISO and CT-based imaging, through the use of 

AI technologies. 
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