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Abstract 

Duchenne muscular dystrophy is a highly progressive muscle wasting disease of early childhood 
and characterized by complex pathophysiological and histopathological changes in the voluntary 
contractile system, including myonecrosis, chronic inflammation, fat substitution and reactive 
myofibrosis. The continued loss of functional myofibres and replacement with non-contractile 
cells, as well as extensive tissue scarring and decline in tissue elasticity, leads to severe skeletal 
muscle weakness. In addition, dystrophic muscles exhibit a greatly diminished regenerative 
capacity to counteract the ongoing process of fibre degeneration. In normal muscle tissues, an 
abundant stem cell pool consisting of satellite cells that are localized between the sarcolemma 
and basal lamina, provides a rich source for the production of activated myogenic progenitor 
cells that are involved in efficient myofibre repair and tissue regeneration. Interestingly, the self-
renewal of satellite cells for maintaining an essential pool of stem cells in matured skeletal 
muscles is increased in dystrophin-deficient fibres. However, satellite cell hyperplasia does not 
result in efficient recovery of dystrophic muscles due to impaired asymmetric cell divisions. The 
lack of expression of the full-length dystrophin isoform Dp427-M, which is due to primary 
defects in the DMD gene,  appears to affect key regulators of satellite cell polarity causing a 
reduced differentiation of myogenic progenitors, which are essential for myofibre regeneration. 
This review outlines the complexity of dystrophinopathy and describes the importance of the 
pathophysiological role of satellite cell dysfunction. A brief discussion of the bioanalytical 
usefulness of single cell proteomics for future studies of satellite cell biology is provided. 
Key Words: dystrophinopathy, fibrosis, immune response, myoblast, stem cell. 

Eur J Transl Myol 11856, 2023 doi: 10.4081/ejtm.2023.11856

 This review on the cellular pathogenesis of Duchenne 
muscular dystrophy (DMD) is part of the Special Issue 
on ‘Muscle Satellite Cells in Health and Disease’ in the 
European Journal of Translational Myology, edited by 
Massimo Ganassi and Zipora Yablonka-Reuveni.1 The 
quintessential satellite cell (SC) population, discovered 
independently in 1961 by Alexander Mauro and Bernard 
Katz,2-5 represents resident myogenic stem cells in 
skeletal muscles.6-8  SCs are of central importance for 
supporting neuromuscular homeostasis, myofiber 
maintenance, muscle plasticity and the high degree of 
adaptability of the voluntary contractile system to 
changed functional demands, as well as the remarkable 
regenerative capacity of skeletal muscles that underlie 
the self-repair capabilities of myofibres following 

traumatic injury, chronic disease or aging-related 
functional decline.9-11 Interestingly, during myofiber 
regeneration in long-term denervated muscles, the 
relative number of SCs remains at a high level.12,13 
Morphological studies have shown that the regeneration 
of contractile fibres plays a crucial role in the 
maintenance of chronically denervated skeletal muscles. 
Replication of SCs clearly occurs after drug-induced 
muscle damage, using repeated applications of the local 
anaesthetic and nerve blocking agent bupivacaine, even 
in the absence of reinnervation.12 
The self-renewal of SCs is finely regulated in order to 
maintain an essential stem cell pool in matured skeletal 
muscles.7 This process is balanced with the production of 
myogenic progenitor cells,8 which are involved in 
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efficient myofibre repair and regeneration.14 A 
disturbance of this delicate balance between symmetric 
versus asymmetric cell division of activated SCs causes 
a diminished regenerative capacity and thus plays a 
crucial role in neuromuscular pathology.10 This article 
focuses on the pathophysiological complexity of DMD 
and provides an overview of the role of SC dysfunction 
as a critical part of the overall damage pathway that leads 
to contractile weakness in dystrophic muscles.15 
Abnormal functioning of the resident stem cell pool in 
dystrophin-deficient muscle fibres appears to be of 
central importance for the weakened regenerative 
capacity of dystrophic myofibres,16-19 making it an 
integral part of the major symptoms of dystrophinopathy, 
i.e. progressive skeletal muscle degeneration, fat 
replacement, reactive myofibrosis and chronic sterile 
inflammation.20-22 
In this review, we outline the pathophysiological 
mechanisms that involve fibre necrosis, myofibrosis, a 
sustained immune response and SC dysfunction, and 
briefly outline the relevance of these destructive 
processes for the development and innovative design of 
novel therapies to treat dystrophin deficiency. For the 
selection of up-to-date publications to be discussed in this 
article on dystrophinopathy, the roles of myonecrosis, 
myofibrosis, inflammation and SC dysfunction were 
reviewed by literature screening using a combination of 
search terms, such as ‘dystrophin’, ‘necrosis’, 
‘myonecrosis’ ‘fibrosis’, ‘myonecrosis’, ‘inflammation’ 
‘satellite cell’, ‘myoblast’, ‘dystrophinopathy’ and 
‘Duchenne muscular dystrophy’ in the Pubmed database. 
The identified list of publications was then further 
screened for their relevance to this review of the 
molecular and cellular pathogenesis of DMD. 

Dystrophinopathy 
DMD is an X-chromosomally inherited and highly 
progressive muscular disorder of early childhood.23 
Primary defects in the DMD gene trigger the almost 
complete loss of the membrane cytoskeletal protein 
named dystrophin.24 However, a large number of 
promoters produce a variety of tissue-specific dystrophin 
protein isoforms.25 Thus, depending on individual 
mutations within the extremely large DMD gene, in 
combination with genetic modifiers, the bodily functions 
of Duchenne patients can be affected in a variety of 
ways.26-28 Besides skeletal muscle wasting, multi-
systemic complications can occur, including late-onset 
cardio-respiratory syndrome,29 neuronal abnormalities,30 
and dysfunction of the kidneys, bladder, liver, digestive 
tract and the immune system.31 Here, we focus on the 
complexity of progressive skeletal muscle degeneration. 
Figure 1 outlines the promoter structure of the human 
DMD gene, the major domains of the full-length Dp427-
M protein isoform of dystrophin that is expressed in 
myofibres, and the localization of the various 
components of the dystrophin-associated glycoprotein 
complex at the sarcolemma. The core dystrophin 

complex consists of α/β-dystroglycan, α/β/γ/δ-
sarcoglycan, sarcospan, α/β-syntrophin and α-
dystrobrevin.32 The tight linkage between the α/β-
dystroglycan sub-complex and Dp427-M bridges the 
plasmalemma membrane  and provides a stabilizing 
protein assembly between the sub-sarcolemmal actin 
cytoskeleton and the laminin-211 complex, which in turn 
binds collagen isoform COL-IV of the basal lamina.33 
Importantly, this indirect association between the 
intracellular cytoskeleton and the extracellular matrix 
prevents excess damage to the fibre periphery during 
repeated excitation-contraction-relaxation cycles or 
rigorous muscle stretching in normal muscle.32,34 
As listed in Figure 1, the major functions of the core 
dystrophin complex include the provision of a trans-
sarcolemmal linkage, the stabilization of the myofibre 
periphery, the organization of the intracellular network of 
cytoskeletal elements, the facilitation of a sarcolemmal 
signalling hub and the mechanical support for lateral 
force transmission at costamere structures.34 Hence, a 
better understanding of the loss of dystrophin-associated 
proteins due to dystrophin deficiency and their 
involvement in the molecular and cellular pathogenesis 
of dystrophinopathy is critical for the identification of 
novel therapeutic targets and the development of new 
strategies to treat X-linked muscular dystrophy, such as 
improved pharmacological interventions, stem cell 
therapy and/or gene therapy.35-38 Furthermore, biomarker 
discovery is of central importance for the improved 
diagnosis, prognosis and therapeutic monitoring of 
DMD.39-41 

Chronic myofibre degeneration 
Myonecrosis is the pathophysiological initiator of the 
complex degenerative processes that occur in dystrophic 
muscle fibres.22,23 The absence of dystrophin partially 
eliminates the molecular anchoring capacity of the 
sarcolemma and thereby causes the  loss of the 
dystrophin-associated glycoprotein complex.42-44 The 
reduced expression of dystroglycans, sarcoglycans, 
dystrobrevins, syntrophins and sarcospan triggers 
impaired sarcolemmal integrity due to the loss of the 
linkage between laminin-211 and cortical γ-actin.33 
Weakened costameres result in diminished lateral force 
transmission and lessened load bearing capacity. 
Contraction-induced micro-rupturing of the surface 
membrane system damages the cellular unity of the 
muscular system. Sarcolemmal disintegration,45 was 
shown to be directly linked to a calcium-dependent 
damage pathway in X-linked muscular dystrophy.46 Ca2+-
ions flux through the disrupted plasmalemma and Ca2+-
leak channels, which causes chronically elevated Ca2+-
levels in the sarcosol. In conjunction with impaired 
luminal Ca2+-buffering,47,48 this triggers Ca2+-dependent 
proteolysis leading to myofiber degradation,49 as 
summarized in Figure 2.  
The systematic analysis of dystrophic animal models, 
such as dystrophin-lacking mice, dogs or pigs,50-52 was 
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crucial for the elucidation of myonecrosis and associated 
degenerative processes in muscular dystrophy.53,54 
Various mdx-type mouse models are frequently used for 
biomarker discovery, the identification of novel 
therapeutic targets and the testing of experimental 
treatments.55-57 Proteome-wide alterations in dystrophin-
deficient muscle specimens were shown to include 
characteristic abundance changes in proteins involved in 
excitation-contraction coupling, the contraction-

relaxation cycle, ion homeostasis, bioenergetic 
pathways, the cellular stress response, the cytoskeleton, 
signalling cascades, membrane repair, and the 
extracellular matrix.49,57 
The diagram in Figure 2 gives an overview of the 
complexity of dystrophinopathy, including the 
pathophysiological role of tissue scarring, loss of muscle 
elasticity, substitution with non-contractile cells, 
impairment of the regenerative capacity of dystrophic 

 
 

Fig 1. The DMD gene and its protein product dystrophin- The diagram gives an overview of (i) the DMD gene that is 
defective in Duchenne muscular dystrophy, (ii) the major domains of the dystrophin protein product of this 
extremely large X-chromosomal gene and (iii) the structure of the dystrophin-associated glycoprotein complex 
in skeletal muscles. Eight promoters are involved in the tissue-specific expression of dystrophins, i.e. isoforms 
Dp427-M (muscle), Dp427-P (Purkinje cells), Dp427-B (brain), Dp260-R (retina), Dp140-B/K (brain/kidney), 
Dp116-S (Schwann cells), Dp71-G (ubiquitous) and Dp45 (brain). The full-length dystrophin protein isoform 
Dp427-M, which functions as a membrane cytoskeletal protein in the subsarcolemmal region, consist of a 
distinct amino-terminal domain (NT) with a major actin-binding site, four proline-rich hinge regions named 
H1-H4, three spectrin-like rod domains named SLR1-3, SLR4-19 and SLR20-24, a conserved WW region with 
tryptophan residues, a cysteine-rich CR domain and a carboxy-terminus (CT). Dystrophin forms a tight 
sarcolemma-associated complex with α/β-dystroglycans, α/β/γ/δ-sarcoglycans, sarcospan, α-dystrobrevin and 
α/β-syntrophins. The dystrophin/dystroglycan-provided linkage between laminin-211 and cortical γ-actin 
mediates an indirect connection between the collagen-containing extracellular matrix and the intracellular 
cytoskeleton. Besides being involved in the continued stabilization of the myofibre periphery during excitation-
contraction-relaxation cycles, additional functions of the dystrophin-glycoprotein complex include the 
provision of an organizing hub for the membrane cytoskeleton and its connections to the intracellular 
cytoskeleton, the facilitation of a sarcolemmal signalling hub and mechanical support for lateral force 
transmission at costameres. 
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muscles and chronic sterile inflammation.58 These 
changes in muscle integrity are related to exacerbated 
immune responses, fibre necrosis, fat replacement, 
reactive myofibrosis and SC dysfunction,59 as described 
in below sections. 

Chronic sterile inflammation 
In DMD, a sustained immune response can be observed 
as a reaction to progressive fibre necrosis,20 involving 
initially mostly the innate immune system.60 However, 
crosstalk signalling exists between the innate immune 
response and T-cell adaptive immunity within the 
skeletal muscular system.61,62 Within the lymphatic 
system, striking morphological changes were shown to 
occur in lymph nodes in association with muscular 
dystrophy. This affects especially the white pulp region 
of the spleen. In the dystrophic organism, the abundance 
of splenic inflammatory monocytes changes and immune 
cells migrate at an elevated rate from their splenic 

reservoir to dystrophin-deficient myofibres.63 The 
systematic and mass spectrometry-based proteomic 
screening of spleen specimens from the mdx-4cv mouse 
model of dystrophinopathy confirmed this crosstalk 
between lymphoid organs and dystrophic skeletal 
muscles.64,65 Splenic monocyte transfer to damaged 
myofibres and their subsequent differentiation into 
macrophages is a crucial underlying factor for chronic 
inflammation in muscular dystrophy.66 Prolonged M1 
and M2 macrophage activity,67 based on both resident 
macrophages and infiltrating myocytes, and cytokine 
release are associated with a chronic inflammatory state 
of dystrophic fibres.68 The massive infiltration of 
dystrophic fibres by macrophages, neutrophiles and 
dendritic cell populations is mediated by extensive 
cytokine and chemokine signalling events.59,62 

The transforming growth factor TGF-β is released from 
M2 macrophages and initiates the activation of stromal 
cells that can adapt to multiple cellular lineages,69 

 
 
Fig 2.  Overview of the highly complex pathogenesis of muscle wasting in Duchenne muscular dystrophy The 

flowchart summarizes the complex pathophysiological changes in dystrophin-deficient skeletal muscle. The 
almost complete loss of the dystrophin isoform Dp427-M causes the loss of sarcolemmal integrity and 
contraction-induced membrane rupturing, which in turn results in abnormal sarcosolic calcium handling 
and associated proteolytic degradation of muscle proteins. Progressive myonecrosis is associated with a 
sustained immune response, fat replacement and reactive myofibrosis, as well as satellite cell dysfunction. 
This triggers myofiber disintegration, chronic inflammation, substitution with non-contractile cells, tissue 
scarring and an impaired regenerative capacity in dystrophic skeletal muscles. 
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including the important class of fibro-adipogenic 
progenitors (FAPs).70-72 The FAPs type of cells 
participates in the generation of fibroblasts, 
myofibroblasts and adipocytes following activation by 
myofibre disintegration.73 Prolonged periods of myofibre 
damage are associated with the shedding of characteristic 

components of damage-associated molecular patterns 
(DAMPs) including ATP and nucleic acids.74 The innate 
immune system recognizes DAMP molecules and 
triggers an inflammatory response involving nuclear 
factor NF-κB and the inflammasome.20 Peptides or 
protein fragments frequently leak through the damaged 

 
 
Fig 3.  Satellite cell dysfunction in Duchenne muscular dystrophy., The left panel of the diagram gives an overview 

of the main cell types and developmental steps involved in regenerative myogenesis in normal adult skeletal 
muscles following an appropriate stimulus, such as injury to the multi-nucleated skeletal muscle fibre system. 
Hierarchical alterations in transcription factor expression patterns, including PAX7 (paired box 7), MYOD1 
(myoblast determination protein 1) and MYOG (muscle-specific transcription factor myogenin), can be 
observed during cellular changes. The dormant muscle stem cell population consisting of non-activated 
satellite cells, which are located between the sarcolemma and basal lamina, is PAX7-positive and 
MYOD1/MYOG-negative. Cellular proliferation is based on a non-identical developmental path that 
replenishes the satellite cell pool via symmetric cell division and produces via asymmetric cell division 
myogenic progenitor cells, which are PAX7/MYOD1-positive and MYOG-negative. Cellular differentiation 
results in PAX7-negative and MYOD1/MYOG-positive myoblasts that fuse to form multi-nucleated myotubes 
for efficient muscle repair. In contrast, the right panel of the diagram provides a pathophysiological scheme 
that outlines the potential mechanisms that underlie satellite cell dysfunction in dystrophinopathy. A variety 
of studies have shown that dystrophin-deficient stem cells undergo on the one hand increased symmetric cell 
division that causes a certain degree of satellite cell hyperplasia, and on the other hand are characterized by 
decreased asymmetric cell division which results in drastically lower levels of myogenic progenitor cells. The 
loss of stem cell polarization appears to be related to abnormal interactions between the greatly reduced 
levels of dystrophin Dp427-M, the microtubule affinity regulating serine-threonine kinase MARK2 and the 
partitioning defective protein PARD3 (partitioning defective protein 3).  This type of satellite cell 
dysregulation is postulated to play a key role in the diminished regenerative capacity of skeletal muscles in 
Duchenne patients. 
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and dystrophin-deficient sarcolemma. These muscle-
derived molecules may act as neo-antigens in the body 
and can be recognized by the adaptive immune system, 
causing additional immunological reactions.60 

Reactive myofibrosis and fat replacement 
Chronic inflammation and reactive fibrosis appear to be 
closely linked in damaged myofibres, whereby the innate 
immune response was shown to be involved in the 
recruitment of large numbers of myofibroblasts.75 
Myofibroblasts are of central importance for fibrotic 
changes due to their enhanced synthetic capacity for the 
production of matrisomal proteins in muscular 
dystrophy.76 Elevated levels of extracellular matrix 
protein secretion trigger endomysial fibrosis,77 which is 
characterized by classical histopathological features of 
dystrophic muscles, including fibro-fatty scars that 
surround myofibres and thereby inhibit proper mechano-
transduction processes.58,78  
Skeletal muscle scarring and a general loss of tissue 
elasticity due to reactive myofibrosis are characteristic 
signs of dystrophinopathy.21 The aged mdx-4cv mouse 
diaphragm muscle has been extensively surveyed as a 
highly suitable surrogate for studying reactive 
myofibrosis in X-linked muscular dystrophy using 
extracellular matrix proteomics.79 As listed in Figure 2, 
major pathobiochemical features of myofibrosis include 
a drastic increase in collagen deposition and crosslinking, 
as well as the enhanced production of diverse matrisomal 
proteins. Elevated levels were established for the 
matricellular protein periostin, the repair proteins 
annexin-2 and annexin-6, nidogen, fibronectin, 
dermatopontin, vitronectin, the small leucine-rich 
proteoglycans asporin, biglycan, decorin, lumican and 
mimecan, as well as various collagens, including COL-
IV, COL-VI, COL-XV and COL-XVIII.21,57,80 This 
makes fibrosis an important therapeutic target in 
muscular dystrophy,81 as outlined in below section on 
treatment strategies to counteract dystrophic symptoms. 
Of note, adipogenic precursors appear to participate in 
interstitial remodelling in muscular dystrophy resulting 
in aberrant adipogenesis. This process might play a role 
in linking myofibrosis to fat substitution in dystrophic 
muscles.82 Increased fat replacement is associated with 
alterations in physiological cross-sectional muscle area 
and myofibre length,83,84 resulting in abnormal 
contractile functions and metabolic disturbances.85 

Satellite cell dysfunction 
As summarized in Figure 2, stem cell dysfunction plays 
a crucial part in the dystrophic pathogenesis and involves 
the disruption of cellular polarity, the loss of asymmetric 
cell division and a reduction in properly activated 
myogenic progenitor cells.15,86 In contrast to multi-
nucleated and large sized myofibres, muscle stem cells 
(MuSCs) are a small, mono-nucleated and multi-potent 
cell type that is positioned between the sarcolemma and 
basal lamina of mature skeletal muscle fibres.6-8 The pool 

of available MuSCs is provided by a highly regulated 
process of self-renewal,7 and combined with the essential 
creation of myogenic progenitor cells,8 for repair and 
regeneration of adult myofibres.14  
Figure 3 outlines the main steps involved in regenerative 
myogenesis. The presence of major myogenic factors, 
such as PAX7 (paired box 7),87 MYOD1 (myoblast 
determination protein 1),88 and MYOG (muscle-specific 
transcription factor myogenin),89 are reliable markers of 
the various cell types,90 that are involved in the 
regeneration of adult myofibres.91 MYOG signalling is 
intrinsically involved in SC homeostasis and myocyte 
fusion.92 While adult multi-nucleated skeletal muscle 
fibres are negative for PAX7, MYOD1 and MYOG, 
mono-nucleated myogenic precursor cells in their 
quiescent state are PAX7-positive. Myogenic progenitor 
cells produced by asymmetric division are 
PAX7/MYOD1-positive, but MYOG-negative. 
Following differentiation, these cells become PAX7-
negative and MYOD1/MYOG-positive. The integration 
of signals that originate from the muscle environment 
trigger distinct changes in gene expression patterns based 
on complex epigenetic mechanisms, including 
nucleosome repositioning and post-translational 
modifications of chromatin.93 Cellular fusion produces 
multi-nucleated myotubes, which then form regenerated 
myofibres by terminal differentiation.  
The various cellular conversions can be conveniently 
followed by hierarchical alterations in transcription 
factor expression, including the general and not muscle-
specific transcription factor FOXO (forkhead box O). 
Stem cell activation includes the following protein 
expression changes from quiescent SCs (positive for 
PAX7 and FOXO; but negative for  MYF5, MYOD1 and 
MYOG) to activated SCs (positive for PAX7, MYF5 and 
MYOD1; but negative for FOXO and MYOG) to 
myoblasts (positive for PAX7, MYF5 and MYOD1; but 
negative for FOXO and MYOG) to myocytes (positive 
for MYOD1 and MYOG; but negative for PAX7, FOXO 
and MYF5). Therefore, patho-physiological scenarios 
with abnormal functioning of MuSCs in neuromuscular 
disease,1 and/or diminished rates of stem cell 
differentiation are critical.94 This can involve skeletal 
muscle precursor cells and their biological roles in a large 
variety of cellular processes, such as self-repair of 
damaged skeletal muscle fibres in association with 
muscle diseases, traumatic injury and neuromuscular 
aging,9-11 as well as the maintenance of cellular 
homeostasis, muscle adaptations to changed contraction 
patterns and myofibre regeneration.95-98 
Since stem cell dysfunction and regenerative exhaustion 
was shown to play a central role in X-linked muscular 
dystrophy,99 mayor studies with a focus on SC 
abnormalities in dystrophin-deficient muscles are listed 
in Table 1.16-19,57,100-122 Some of the contradictory 
findings on changes in SC numbers in dystrophic muscles 
from Duchenne patients and animal models of 
dystrophinopathy may be due to methodological 
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differences in counting approaches and data 
normalisation in relation to myofibres, myonuclei or 
muscle area, as recently discussed by Morgan and 
Partridge.123,124 Most studies suggest that dystrophin-
deficient muscle fibre populations exhibit some degree of 
SC hyperplasia.100-104 Increased numbers of PAX7-
positive and Dp427-lacking SCs were especially 
observed in slow-twitching type I fibres as compared to 
faster twitching type II fibres.105 
However, an age-related decline in replicative capacity 
of isolated and dystrophic SCs was shown to occur in 

young Duchenne patients.106 Increased SC levels are 
clearly present in young mdx-23 mice, which is followed 
by an age-related decrease in SCs and abnormal Notch 
signalling,109 which is a crucial pathway in muscle stem 
cell development.125 Notably, depletion of SCs was 
observed in the severely dystrophic mdx/utrophin-/- dKO 
mouse model of dystrophinopathy, as compared to the 
milder mdx-23 phenotype.110 
Latent regenerative capacity in dystrophic 
muscles,16,107,108 is characterized by the retention of a 
stem cell pool of PAX7-positive SCs with proliferative 

Table 1. List of major studies focusing on satellite cell and myogenic precursor cell dysfunction in dystrophinopathy. 
Bioanalytical approach Skeletal muscle specimens Characterization of skeletal muscle cells References 
Quantitative cell biological and 
ultrastructural analysis of SCs 
from dystrophic patients 

Various muscle samples from patients 
ranging from preclinical to advanced 
stages of Duchenne muscular dystrophy 

Increased number of SCs in dystrophin-
deficient myofibre populations; type I fibres 
exhibit higher numbers of PAX7-positive 
SCs as compared to type II fibres  

Wakayama et al.,100; Ishimoto 
et al.,101; Watkins and 
Cullen,102,103; Kottlors and 
Kirschner,104; Bankolé et al.,105 

Replicative life-span analysis of 
SCs from dystrophic patients 

Isolated SCs of muscle specimens from 2-
7 year old Duchenne patients 

Age-related decline in replicative capacity 
of isolated and dystrophin-deficient SCs 

Webster and Blau,106 

Evaluation of regenerative 
capacity in dystrophic muscles 

Primary cultures, isolated myofibres, 3-
month old extensor digitorum longus and 
6-month old diaphragm of mdx-23 mouse 

Demonstration of latent regenerative 
capacity in dystrophic muscles 

Yablonka-Reuveni and 
Anderson,16; Boldrin et al.,107; 
Matecki et al.,108 

Histological, biochemical and 
molecular biological analysis of 
SCs in dystrophic muscles 

Gastrocnemius from 3-month old mdx-23 
mouse, as compared to DMDmdx/ Largemyd 
double mutant 

Retention of PAX7-positive SC pool and 
proliferative capacity, but incomplete 
myofiber maturation and lack of preventing 
muscle degeneration 

Ribeiro et al.,18 

Analysis of Notch signaling in 
SCs  

Myofiber preparations from extensor 
digitorum longus of 2-month old mdx-23 
mice 

Increased SCs in young mdx-23 mice, 
followed by age-related decrease in SCs and 
Notch signalling deficiency 

Jiang et al.,109 

Comparative analysis of SCs in 
mdx-23 versus mdx/utrophin-/- 
dKO mice 

Extensor digitorum longus from 2-month 
old mouse models 

Depletion of SCs in severely dystrophic 
dKO mice, as compared to milder mdx-23 
phenotype 

Lu et al.,110 

Cell biological analysis of 
dystrophin in SCs 

Tibialis anterior, soleus and extensor 
digitorum longus from mature Wistar rats  

Presence of dystrophin isoform Dp427-M in 
normal SCs 

Zhang and McLennan,111 

Analysis of epigenetic activation 
of SCs commitment in dystrophin-
deficient muscles 

Tibialis anterior and extensor digitorum 
longus from 2-month old mdx-23 mice 

Asymmetric division of SCs involves MYF5 
activation by PAX7, depending on CARM1, 
a specific substrate of p38γ/MAPK12. 
Dysregulation of p38γ/CARM1 signaling 
occurs in mdx-23 muscles 

Chang et al.,112 

Cell biological analysis of 
dystrophin in dystrophic muscles 

Tibialis anterior from 3-month old mdx-
23 mouse 

Demonstration of association of dystrophin 
deficiency with decrease in the cell polarity 
regulators MARK2 and PARD3 

Dumont et al.,17 

Transcriptomic analysis of mdx 
myoblasts 

Gastrocnemius-derived myoblasts from 
2-month old mdx-23 and mdx-βgeo mice, 
and Duchenne patient myoblasts 

Significant alteration of gene expression 
including MyoD, MyoG, Mymk and Mymx, 
resulting in increased myoblast 
proliferation. 

Gosselin et al.,113 

Proteomic screening of total 
muscle extracts 

Diaphragm, 3-month versus 15-month old 
mdx-4cv mouse  

Increase in myogenic marker CD34 Gargan et al.,57 

Multi-omics analysis of 
myogenesis in dystrophinopathy  

Human tissue-derived myoblasts and 
human induced pluripotent stem cells 
from Duchenne patients 

Establishment of early developmental 
manifestation of the dystrophic phenotype 
during myogenesis 

Mournetas et al.,114 

Molecular biological and 
physiological characterization of 
mdx-23 myoblasts 

Immortalized mdx-23 and dystrophin-
positive control myoblast cell lines, and 
primary myoblasts from 2-month old 
mdx-23 hindlimb muscles 

Myoblasts from mdx-23 muscle exhibit 
abnormal calcium-signaling and increased 
susceptibility to purinergic receptor P2Y-
mediated stimulation, causing 
reduced myoblast motility 

Róg et al.,115,116 

Modelling of dystrophic patient-
specific phenotypes in 
reprogrammed myotubes 

Bioengineered dystrophic muscle tissues 
using culturing and differentiating of 
MYOD1-directly reprogrammed 
fibroblasts from Duchenne patients 

Determination of cellular and molecular 
pathogenesis and mechanisms of 
regeneration in dystrophic myotubes 

Barthélémy et al.,19 

Analysis of dystrophic patient-
derived human induced 
pluripotent stem cells 

Skeletal myotubes generated from hiPSCs 
from 1-8 year old Duchenne patients 

Demonstration of pronounced calcium 
influx in myotubes following electric 
stimulation for in vitro contraction; 
evaluation of therapeutic strategies 

Shoji et al.,117; Yoshioka et 
al.,118 

Analysis of disturbed bioenergetic 
metabolism in dystrophic 
myoblasts 

Immortalized mdx-23 mouse myoblasts 
and dystrophin-positive controls; extensor 
digitorum longus from 2-month old 
mdx/utrophin-/- dKO mice 

Mitochondrial dysfunction in dystrophic 
myoblasts and fused myofibres is associated 
with reduced oxygen consumption, altered 
mitochondrial membrane potential and high 
levels of reactive oxygen species 

Onopiuk et al.,119; Pant et al.,120; 
Matre et al.,121 

Analysis of SCs senescence in 
muscular dystrophy 

Tibialis anterior and diaphragm primary 
cell preparations from the dystrophic rat 
model (DMD rat)  

Cellular senescence-mediated exacerbation 
of muscular dystrophy in association with 
increased expression of senescence marker 
genes CDKN2A, p16 and p19 

Sugihara et al.,122 
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capacity, but incomplete myofiber maturation and lack of 
preventing skeletal muscle degeneration.18 Thus, a major 
pathobiological concept of MuSCs dysfunction in 
dystrophinopathy is based on the assumption that a 
disrupted balance of activated SCs exists between 
symmetric cell division, which is involved in the self-
renewal of SCs, and asymmetric cell division, which 
produces myogenic precursor cells for muscle repair, as 
diagrammatically outlined in Figure 3.15 The membrane 
cytoskeletal protein dystrophin is positioned in the sub-
sarcolemmal region in mature myofibres,126 but also 
present at relatively high abundance in activated MuSCs 
and was shown to play a regulatory role in SC polarity 
and the support of asymmetric cell division.17,111 

In dystrophin-containing normal SCs, Dp427-M interacts 
with β1-syntrophin, which in turn binds to the mitogen-
activated protein kinase p38γ/MAPK12,  and a key 
regulator of cell polarity, the microtubule affinity 
regulating serine-threonine kinase MARK2 
(PAR1b).17,59,94 Symmetric division of SCs involves 
MYF5 (myogenic factor 5) activation by PAX7, 
depending on CARM1 (coactivator-associated arginine 
methyltransferase 1), a specific substrate of 
p38γ/MAPK12. Importantly, the uneven distribution of 
dystrophin is essential for supporting asymmetric cell 
division and the initiation of myogenic differentiation in 
normal skeletal muscle SCs. In contrast, MARK2 
expression levels are reduced in dystrophin-lacking SCs, 
which inhibits the proper delocalization of the cell 
polarity regulator PARD3 (partitioning defective protein 
3) to the opposing side of SCs.17 
Dysregulation of p38γ/CARM1 signalling occurs in mdx-
23 muscles.112 Hence, the reduction of asymmetric 
divisions of SCs that lack dystrophin leads to a drastically 
lower numbers of myogenic progenitors, which are 
essential for fibre regeneration. This diminished 
regenerative capacity due to SC dysfunction in 
association with Dp427-MARK2-PARD3 dysregulation 
and a loss of cell polarization,17 decisively intensifies the 
overall pathogenesis of dystrophinopathy, which is 
characterized by highly progressive myonecrosis, 
chronic inflammation, fat substitution and reactive 
myofibrosis. 
Besides altered patterns of cell division, dystrophic SCs 
and their activated cell progeny were also shown to be 
associated with abnormal cellular signalling, metabolic 
disturbances, defective epigenetic mechanisms, 
disturbed calcium signalling and mitochondrial 
dysfunction.94 Dystrophic myoblasts and fused 
myofibres exhibit mitochondrial abnormalities, including 
reduced oxygen consumption, altered mitochondrial 
membrane potential and high levels of reactive oxygen 
species.119-121 Myoblasts from mdx-23 muscle are 
characterized by abnormal Ca2+-signalling and an 
increased susceptibility to purinergic receptor P2Y-
mediated stimulation, causing reduced myoblast 
motility.115,116 Studies with dystrophic myotubes have 
revealed abnormal signalling patterns and considerable 

Ca2+-influx into myocytes following electric stimulation, 
which can be used as an experimental system for the 
evaluation of novel therapeutic strategies.19,117,118 
Cellular senescence-mediated exacerbation of muscular 
dystrophy was established to occur in association with 
increased expression of senescence marker genes such as 
CDKN2A, p16 and p19.122 Thus, the inherited muscle 
wasting disorder DMD fits into the general category of 
secondarily affected satellite cellopathies,1,127 

Satellite cells in protected extraocular muscles 
In contrast to most skeletal muscle types in the body and 
their susceptibility to inherited disorders, a divergent 
subtype is represented by extraocular muscles (EOM) 
with their unusually high presence of activated stem cells 
and accompanying levels of extraordinary regenerative 
capacity.128 The study of SCs in the EOM cell niche is 
therefore of considerable biomedical importance, since 
they represent a naturally protective phenotype of 
muscular dystrophy.129 Despite dystrophin deficiency, 
EOMs retain efficient regenerative capacity.130,131 A high 
proliferative rate of specialized regenerative myogenic 
precursor cell populations seems to play a key role in this 
protection of EOM morphology and physiological 
function.132,133 
EOMs are characterized by a high degree of PITX2 
(paired-like homeodomain transcription factor 2) - 
positive myogenic precursor cells, whereby this 
transcription factor is involved in the regulation of SC 
differentiation.134 Biochemical and proteomic studies 
confirmed the mild phenotype of dystrophin-lacking 
EOMs,135-137 and showed the compensatory upregulation 
and extra-junctional localization of the autosomal 
dystrophin homologue utrophin,138,139 which is highly 
enriched at the neuromuscular junction in normal skeletal 
muscle fibres.140 Hence, the small size of EOMs with 
relatively low load bearing, a highly efficient Ca2+-
extrusion system, extra-junctional utrophin expression 
and associated rescue of sarcolemmal glycoproteins 
and/or a significantly higher level of regenerative 
capacity could explain the milder dystrophic phenotype 
of this highly specialized type of skeletal 
muscles.129,132,141 

Proteomics of satellite cell dysfunction 
Although only a limited number of omics-type studies 
have so far directly focused on the detailed 
characterization of SCs,142-144 or the specific role of SCs 
in dystrophinopathy,57,113,114 high-throughput systems 
biological approaches have great potential to further 
elucidate the role of SC modulation and dysfunction in 
health and disease. The transcriptomic analysis of mdx-
23 myoblasts has established significant alterations in 
gene expression patterns, including MyoD, MyoG, Mymk 
and Mymx, indicating increased myoblast 
proliferation.113 The proteomic screening of total muscle 
extracts of 3-month versus 15-month old mdx-4cv mouse 
diaphragm preparations has revealed increased levels of 



Special Issue on Muscle Satellite Cells in Health and Disease 
Cellular pathogenesis of DMD 

Eur J Transl Myol 11856, 2023 doi: 10.4081/ejtm.2023.11856 

- 9 - 

 

the putative myogenic markers CD34 and cadherin-13 
(CDH13, T/H-cadherin).57 The surface marker protein 
CD34 was previously identified as a robust SC-linked 
biomarker.145-147 A multi-omics analysis of 
dystrophinopathy was carried out with human tissue-
derived myoblasts and human induced pluripotent stem 
cells (hiPSCs) from Duchenne patients, and established 
the early developmental manifestation of the dystrophic 
phenotype during myogenesis.114 
These initial findings highlight the enormous potential of 
future proteomics-based studies for the detailed 
characterization of protein alterations in SCs, focusing 
specifically on single cell proteomics (SCP).148-150 
Technological approaches using high-throughput 
sequencing of DNA and RNA in individual cells have 
contributed enormously to the omics field to date. 
Proteomic profiling is currently lagging behind these 
advanced molecular biological screening methods in 
terms of sensitivity and coverage.151  However, 
advancements in the ability to perform SCP is now on a 
significant upwards trajectory, due in no small part to 
innovations in sample preparation, chromatography, 
mass spectrometry hardware and associated 
workflows.152 Isobaric tag-based workflows allow for 
1000-1500 protein groups to be quantified per cell, with 
the ability to run dozens of samples daily, demonstrating 
the high-throughput nature of this approach.153 Using 
specific isobaric tandem mass tags (TMT) to label 
peptides originating from a single cell, multiplexing 
employing the latest reagents allows multiple individual 
samples to be combined, often including a carrier channel 
(100-200 cells) to facilitate peptide identification.154 
Label-free quantification (LFQ) workflows evaluate each 
single cell sample individually, with approximately 2000 
protein groups identifiable using data dependent 
acquisition (DDA) modes.155 However, this approach is 
more time consuming, reducing the daily number of 
samples that can be analysed. Many of the studies 
reporting on SCP and numbers of identifiable protein 
groups focus on cell lines, for example HeLa cells.156 Of 
note, isolated individual muscle fibres contain 
significantly higher concentrations of protein than HeLa 
cells, potentially increasing the capability of applying a 
SCP approach to fragment and identify protein species 
associated with the myocyte phenotype.157-159 Recently, 
Momenzadeh and co-workers,160 demonstrated the 
bioanalytical usefulness of this powerful approach, using 
15 min run times on a Bruker Tims-TOF SCP instrument 
combining parallel accumulation serial fragmentation 
(PASEF) with a data-independent acquisition (DIA) 
approach, called diaPASEF. Comparing type 1 and 2a 
myofibres, 94 proteins were found to be statistically 
different between clusters. This demonstrates the power 
of this proteomic approach and future applications in 
muscle physiology and pathophysiology, including 
muscle regeneration,161 and the evaluation of novel 
therapeutic strategies such as myoblast transfer therapy 
to treat dystrophinopathy.162 

Therapeutic approaches 
Based on the description of major aspects of the 
molecular and cellular pathogenesis of DMD, a brief 
overview of novel therapeutic approaches to treat the 
complex and multi-systems abnormalities of 
dystrophinopathy is given. A more detailed discussion of 
impending improvements in pharmacotherapy, stem cell 
therapy and gene editing is beyond the scope of this 
review that has focused on muscle degeneration due to 
dystrophin deficiency. However, a large number of 
excellent and comprehensive reviews on DMD treatment 
options have recently been published.35-37,163 Reports on 
advances with preclinical and clinical trials and critical 
discussions of potential issues with biomedical and 
technical limitations, as well as the clinical advantages of 
diverse pharmacological, cellular and genetic approaches 
are available.38,164-166 The major categories of therapeutic 
approaches can be divided into (i) muscle stem cell 
therapy,167-174 (ii) the pharmacological treatment of 
complex symptoms associated with the cardio-
respiratory syndrome, disturbed ion handling, abnormal 
cellular signalling, chronic inflammation, disturbed 
bioenergetics, abnormal cellular growth, dysregulated 
metabolism and chronic oxidative stress,175-180 using 
potentially multi-drug combinations tested in suitable 
dystrophic animal models,181 (iii) exon-skipping therapy 
using antisense molecules,37,182-187 (iv) CRISPR/Cas9 
(clustered regularly interspaced short palindromic 
repeats and CRISPR-associated protein 9) - mediated 
exon excision and somatic genome editing,36,188-190 (v) 
stop codon read-through therapy,191,192 (vi) vector 
transfer therapy,193-195 (vii) targeted dystrophin 
substitution via its autosomal homologue utrophin,196-198 
(viii) up-regulation of distinct molecular chaperones, 
such as heat shock proteins, to strengthen the cellular 
stress response,199,200 and (ix) electro-stimulation therapy 
to trigger muscle transformation.201 
In response to chronic myonecrosis and inflammation, 
dystrophic skeletal muscles undergo considerable 
changes in their extracellular matrix environment. Since 
tissue scarring due to reactive myofibrosis plays a central 
role in the loss of muscle tissue elasticity and 
contractility,78 as well as representing a barrier to many 
therapeutic approaches including stem cell therapy and 
gene transfer,202 anti-fibrosis therapy is of crucial 
importance in the field of DMD treatment.81 A drastic 
decrease in pro-fibrotic proteins using exon-skipping 
therapy has been suggested as a suitable option to reduce 
excess scarring of dystrophic muscle tissues.203 

In conclusion, DMD is characterized by SC dysfunction. 
Although dystrophin deficiency appears to cause initially 
SC hyperplasia, myogenic differentiation and muscle 
regeneration is impaired. A potential mechanism for 
triggering decreased levels of asymmetric divisions of 
dystrophic SCs is the reduced expression of crucial 
binding partners of dystrophin that result in loss of SC 
polarity. This gives stem cell therapy a central place in 
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novel treatment options for improving the regenerative 
capacity of dystrophic myofibres.  

List of acronyms 
CARM1 - coactivator-associated arginine 
methyltransferase 1 
COL - collagen 
DAMP - damage-associated molecular patterns 
DDA - data dependent acquisition 
DIA - data-independent acquisition 
dKO - double knockout 
DMD - Duchenne muscular dystrophy 
Dp - dystrophin protein 
EOM - extraocular muscle 
FAPs - fibro-adipogenic progenitors 
FOXO - forkhead box O 
hiPSCs - human induced pluripotent stem cells 
LFQ - label-free quantification 
MAPK12 - mitogen-activated protein kinase 12 
MARK2 - microtubule affinity regulating kinase 2 
MuSCs - muscle stem cells 
MYF5 - myogenic factor 5 
MYOD1 - myoblast determination protein 1 
MYOG - muscle-specific transcription factor myogenin 
P2Y - purinoceptor 2 
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