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Abstract 

The wobbler mouse is a widely used model system of amyotrophic lateral sclerosis and exhibits 
progressive neurodegeneration and neuroinflammation in association with skeletal muscle 
wasting. This study has used wobbler brain preparations for the systematic and mass 
spectrometric determination of proteome-wide changes. The proteomic characterization of total 
protein extracts from wobbler specimens was carried out with the help of an Orbitrap mass 
spectrometer and revealed elevated levels of glia cell marker proteins, i.e., glial fibrillary acidic 
protein and the actin-binding protein coronin. In contrast, the abundance of the actin-binding 
protein neurabin and the scaffolding protein named piccolo of the presynaptic cytomatrix were 
shown to be reduced. The increased abundance of glial fibrillary acidic protein, which is 
frequently used in neuropathological studies as a marker protein of glial scar formation, was 
confirmed by immunoblotting. In analogy, the proteomic profiling of the brain from another 
established murine model of motor neuron disease, the SOD1 mouse, also showed increased 
levels of this intermediate filament protein. This suggests that neurodegenerative processes are 
associated with astrogliosis in both the wobbler and SOD1 brain. 
Key Words: amyotrophic lateral sclerosis; astrogliosis; GFAP; glial fibrillary acidic protein; 
SOD1 mouse; wobbler mouse. 
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 Motor neuron diseases are relatively rare 
neuromuscular diseases of both spontaneous or familial 
type that belong to the class of heterogeneous neuro-
degenerative disorders. The most common adult-onset 
form of motor neuron disease that is associated with 
progressive muscular weakness is amyotrophic lateral 
sclerosis, also referred to as Lou Gehrig’s disease, which 
typically shows degeneration of upper and lower motor 
neurons.1 This causes a dysfunctional flow of excitatory 
signals from the neurons that connect the cortex to the 
brain stem and spinal cord, as well as an impaired 
neuronal outflow from the brainstem and the spinal cord 
towards voluntary muscles. Motor neuron diseases 
appear to be due to complex interdependent factors, such 
as genetic susceptibility, environmental effects, lifestyle 
and aging.2 

The development of novel treatments to address the 
complex pathophysiological challenges associated with 
amyotrophic lateral sclerosis focus mostly on new 
pharmacological avenues and gene modulation therapy.3-

5 Currently available amyotrophic lateral sclerosis drugs 
which only exhibit modest benefits on survival include 
the glutamatergic neuro-transmission inhibitor Riluzole 
and the antioxidant agent Edaravone.6 Symptomatic 
therapies include speech therapy for dysarthria and the 
application of muscle relaxants to treat spasticity.7 Of 
note, moderate intensity exercise to induce skeletal 
muscle strengthening and select forms of cardiovascular 
exercise have potentially beneficial effects on patients  by 
reducing the levels of muscular deconditioning and 
disuse-related muscular atrophy.8-10 The combined usage 
of moderate aerobic and isometric exercise regimes 
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showed promising results to partially counteract the 
detrimental effects of progressive levels of physical 
inactivity.11 Exercise regimes below maximal effort 
improved skeletal muscle strength in patients afflicted 
with amyotrophic lateral sclerosis. Positive effects have 
been observed on energy levels, oxygen consumption and 
fatigue resistance for the performance of daily activity 
levels, as well as overall increased motor function and 
independence.11 
The clinical symptoms of amyotrophic lateral sclerosis 
include a broad range of bodily changes and include both 
severe motor alterations and also extra-motor 
abnormalities. Some patients suffer from limb muscle 
weakness and others show bulbar disease with dysarthria 
and dysphagia.2,7 Mutations in a large number of genes 
that encode proteins with a great variety of biological 
functions have been identified in association with 
amyotrophic lateral sclerosis.12 This includes established 
primary abnormalities in the SOD1, TARDBP, FUS, 
VCP, OPTN, ALS2, SETX, C9ORF72, PFN1, VAPB, and 
UBQLN2 genes; plus a large number of new candidate 
genes.13 
Of crucial importance is the discovery of new biomarker 
candidates for the improved diagnosis, prognosis and 
therapeutic monitoring of amyotrophic lateral sclerosis.14 
In the case of the SOD1 mutation, it was established that 
the abnormal aggregation of superoxide dismutase, 
which normally functions as an essential anti-oxidant 
enzyme that provides cellular protection against toxic 
insults via reactive oxygen species, triggers severe 
oxidative stress causing neuronal cell death.1,2,12 
However, the genetic heterogeneity of neuronal 
abnormalities in amyotrophic lateral sclerosis has 
established many additional pathophysiological 
mechanisms besides oxidative stress, such as defects in 
cytoskeletal networks, axonal transport dysfunction, 
dysregulated vesicle transport, the increased release of 
inflammatory cytokines, mitochondrial dysfunction, 
impaired ion homeostasis, ion channel and pump 
dysfunction, impaired glutamate uptake, defective 
nucleo-cytoplasmic transport, RNA dysregulation and 
impaired DNA repair, as well as glia cell defects in 
oligodendrocytes, Schwann cells, astrocytes and 
microglia.1,2,7,13 
The complexity of molecular and cellular abnormalities 
is at least partially reflected in murine models of motor 
neuron disease. The wobbler mouse is a well-established 
model system of adult-onset amyotrophic lateral 
sclerosis15 which is due to a partial loss-of-function 
mutation in the Vps54 gene that encodes the vacuolar 
protein sorting-associated protein VPS54 protein of the 
multi-subunit Golgi-associated retrograde protein 
(GARP) complex.16 The GARP complex is located 
within the trans-Golgi network and mediates the crucial 
tethering of retrograde transport vesicles. The wobbler 
mouse is characterized by progressive neuro-
degeneration and neuroinflammation in association with 
progressive skeletal muscle wasting.17-19 Based on 

previous proteomic surveys of changes in the skeletal 
musculature and impaired spermiogenesis of the wobbler 
mouse,20-22 this report has focused on the wobbler brain 
using mass spectrometry. Proteomic findings were 
compared to the SOD1 brain model of amyotrophic 
lateral sclerosis, which also exhibits severe alterations in 
skeletal muscles.23 

Materials and Methods 
For the proteomic profiling of the wobbler and SOD1 
mouse brains, general materials and chemicals were 
obtained from Bio-Rad Laboratories (Hemel-Hempstead, 
Hertfordshire, UK), GE Healthcare (Little Chalfont, 
Buckinghamshire, UK) and Sigma Chemical Company 
(Dorset, UK). Protease inhibitors were purchased from 
Roche Diagnostics (Mannheim, Germany). For protein 
digestion, trypsin and Lys-C were obtained from 
Promega (Madison, WI, USA). Primary antibodies were 
purchased from Abcam, Cambridge, UK (ab7260 to glial 
fibrillary acidic protein GFAP; and ab16048 to lamin-
B1). Peroxidase-conjugated secondary antibodies were 
from Chemicon International (Temecula, CA, USA). 
Chemiluminescence substrate was obtained from Roche 
Diagnostics (Mannheim, Germany). Protein 
concentration was determined with the Pierce 660-nm 
Protein Assay (ThermoFisher Scientific, Dublin, 
Ireland). 

Ethical approval, animal license and animal 
maintenance 
Wild type C57/BL6 mice and murine models of 
amyotrophic lateral sclerosis, the wobbler mouse 
(C57BL/6-Vps54wr) and the SOD1 mouse (SOD1-
G93A), were obtained from the Bioresource Unit of the 
University of Bielefeld.22 Animals were kept at a constant 
room temperature of 22°C on a 12:12-h dark-light cycle 
with ad libitum access to food and water. All protocols 
and experiments were performed under the terms of the 
German animal protection law and were permitted by the 
local authorities. Mice were sacrificed by cervical 
dislocation and all biochemical and proteomic studies 
were carried out with post-mortem brain specimens. For 
brain dissection, protein extraction and proteomic 
analyses, 2-months old mice were used. Freshly dissected 
brain specimens were quick-frozen in liquid nitrogen and 
transported to Maynooth University in accordance with 
the Department of Agriculture (animal by-product 
register number 2016/16 to the Department of Biology, 
National University of Ireland, Maynooth) on dry ice and 
stored at -80oC prior to proteomic analysis.22 

Preparation of mouse brain tissue extracts for 
proteomic analysis 
Whole brain specimens from wild type mice (n=4) versus 
murine models of amyotrophic lateral sclerosis (n=4) 
were homogenized in lysis solution containing 50 mM 
Tris-HCl pH 8.0, 8 M urea and 1 mM EDTA. The lysis 
buffer was supplemented with a freshly prepared 
protease inhibitor cocktail.24 The brain extract was then 
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incubated for 1.5 hours at 4°C. Brain tissue extracts were 
processed for mass spectrometry following 
centrifugation at 16,000xg for 5 minutes.24 Protein 
samples were treated with the Ready Prep 2D clean up 
kit from Bio-Rad Laboratories (Hemel-Hempstead, 
Hertfordshire, UK) and the subsequent protein pellets 
were resuspended in 6 M urea, 2 M thiourea, 10 mM Tris-
HCl, pH 8.0. Samples were reduced, alkylated, and 
digested overnight with trypsin as described previously.24 

Mass spectrometric analysis of brain extracts and 
proteomic data analysis 
Brain protein identification and the comparative analysis 
of tissue extracts from wild type versus murine models of 
amyotrophic lateral sclerosis was performed by an 
optimized label-free liquid chromatography mass 
spectrometry procedure.24 All preparative steps of the 
proteomic analysis pipeline, as well as analytical 
procedures using data-dependent acquisition and 
bioinformatic data handling, have been described in 
detail.25-27 A Q-Exactive mass spectrometer and an 

Orbitrap Fusion Tribrid mass spectrometer were 
employed for the analysis of brain specimens. A Thermo 
UltiMate 3000 nano system was used for reverse-phased 
nano-flow high-pressure liquid chromatography and 
directly coupled in-line with a Thermo Orbitrap Fusion 
Tribrid mass spectrometer (Thermo Fisher Scientific, 
Waltham, MA, USA). The qualitative data analysis of 
mass spectrometric files was carried out with the help of 
the UniProtKB-SwissProt Mus musculus database with 
Proteome Discoverer 2.2 using Sequest HT (Thermo 
Fisher Scientific) and Percolator.26 For protein 
identification, the following crucial search parameters 
were employed: (i) peptide mass tolerance set to 20 ppm, 
(ii) MS/MS mass tolerance set to 0.6 Da, (iii) an 
allowance of up to two missed cleavages, (iv) carbamido-
methylation set as a fixed modification and (v) 
methionine oxidation set as a variable modification.27 
Peptides were filtered using a minimum Xcorr score of 
1.9 for 1, 2.2 for 2, and 3.75 for 3 charge states, with 
peptide probability set to high confidence. Quantitative 
label-free data analysis was performed using Progenesis 

Table 1. List of identified brain proteins with changed concentration levels in the wobbler mouse model of 
amyotrophic lateral sclerosis as determined by label-free liquid chromatography tandem mass 
spectrometry. 

Accession number Protein name Peptide 
counts 

Confidence 
score 

Anova (p) Fold 
change 

Q99PU5 Long-chain-fatty-acid--CoA 
ligase ACSBG1 

2 132.34 0.01572 4.14 

Q9WUM4 Coronin-1C 3 144.85 0.00605 3.82 
Q05920 Pyruvate carboxylase, 

mitochondrial 
2 162.42 0.03267 3.61 

Q00612 Glucose-6-phosphate 1-
dehydrogenase X 

2 79.96 0.01139 3.47 

Q9WUB3 Glycogen phosphorylase 2 97.04 0.02155 2.55 
Q8R0Y6 Cytosolic 10-

formyltetrahydrofolate 
dehydrogenase 

2 108.71 0.00524 2.44 

P22752 Histone H2A type 1 2 139.57 0.00241 2.21 
P03995 Glial fibrillary acidic protein 9 710.27 0.01580 2.21 
Q9D0F9 Phosphoglucomutase-1 2 147.84 0.02593 2.14 
Q8BMS1 Trifunctional enzyme 

subunit alpha, mitochondrial 
4 283.71 0.00190 2.13 

P51174 Long-chain specific acyl-
CoA dehydrogenase, 
mitochondrial 

2 117.66 0.00501 2.01 

Q9QYX7 Protein piccolo 3 153.35 0.01498 -2.00 
Q3THE2 Myosin regulatory light 

chain 12B 
2 98.6 0.03079 -2.02 

Q9D8Y0 EF-hand domain-containing 
protein D2 

5 296.75 0.01890 -2.09 

Q6R891 Neurabin-2 2 80.86 0.01875 -2.21 
P23927 Alpha-crystallin B chain 4 228.52 0.00570 -2.32 
O35685 Nuclear migration protein 

nudC  
2 74.37 0.01409 -2.94 
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QI for Proteomics (version 2.0; Nonlinear Dynamics, a 
Waters company, Newcastle upon Tyne, UK). Peptide 
and protein identification were achieved with Proteome 
Discoverer 1.4 using Sequest HT (Thermo Fisher 
Scientific) and Percolator, and were then imported into 
Progenesis QI software for further analysis.26 Protein 

identifications were reviewed, and only those which 
passed the following criteria were considered 
differentially expressed between experimental groups 
with high confidence and statistical significance: (i) an 
ANOVA p-value of ≤0.05 between experimental groups; 
(ii) proteins with ≥2 unique peptides contributing to the 

 
Fig 1. Bioinformatic analysis of changes in protein-protein interaction patterns in the wobbler brain model of 

amyotrophic lateral sclerosis. Potential protein interactions were determined with the help of the 
bioinformatics software programme STRING (https://string-db.org).28 The position of the protein hub 
containing the glial fibrillary acidic protein (GFAP) is marked by a red circle. 

 



Neuroproteomics of wobbler mouse model of amyotrophic lateral sclerosis 
Eur J Transl Myol 33 (3) 11555, 2023 doi: 10.4081/ejtm.2023.11555 

- 5 - 

 

identification.25-27 To calculate the maximum fold change 
for a protein, Progenesis QI calculates the mean 
abundance for that protein in each experimental 
condition. These mean values are then placed in a 
condition-vs-condition matrix to find the maximum fold 
change between any two condition’s mean protein 
abundances.26 The bioinformatic analysis of proteins 
with an altered expression in wobbler brain samples for 
the determination of potential protein-protein interaction 
patterns was carried out with the freely available software 
package STRING (https://string-db.org).28 

Immunoblot analysis of glial fibrillary acidic protein 
The comparative immunoblot analysis of wild type brain 
versus wobbler brain extracts was carried out by an 
optimized method.24 Electrophoretic separation of brain 
proteins was performed with 10% polyacrylamide slab 
gels. Control gels were silver-stained for the visualization 
of protein band patterns. Unstained proteins were 
transferred at 100V and 4°C for 70 min to nitrocellulose 
sheets in a Transblot Cell from Bio-Rad Laboratories 
(Hemel-Hempstead, Hertfordshire, UK). The increased 
abundance of glial fibrillary acidic protein, as detected by 
mass spectrometry, was confirmed by immuno-
decoration using primary antibody ab7260 and a 
secondary peroxidase-conjugated secondary antibody. 
The evaluation of equal protein loading was carried out 
by immuno-decoration with primary antibody ab16048 to 
lamin-B1. The visualization of immuno-decorated 

protein bands was achieved with the enhanced 
chemiluminescence method as per manufacturer’s 
guidelines. Densitometric scanning and statistical 
analysis of immunoblots was performed with a HP PSC-
2355 scanner and ImageJ software (NIH, USA), in 
conjunction with GraphPad Prism software (San Diego, 
CA, USA), in which a p value <0.05 was deemed to be 
statistically significant.  

Results 

Proteomic identification of altered proteins in the 
wobbler mouse model 
The main underlying objective of this investigation was 
to identify proteome-wide changes in mouse models of 
amyotrophic lateral sclerosis employing crude brain 
protein extracts from small tissue specimens. The mass 
spectrometry-based proteomic surveys described here 
used a minimum of preparative steps for a streamlined 
biochemical approach that eliminates excessive 
bioanalytical artefacts for the efficient detection of brain 
proteoforms. Whole brain preparations, rather than 
specific neuroanatomical structures, were chosen as 
starting material in order to elucidate global alterations in 
the entire brain proteome. The systematic evaluation of 
changes in specific protein species is based on the 
availability of established proteomic maps of the wild 
type mouse brain.29-34 This is crucial, since the proper 
interpretation of new findings from comparative 

 
Fig 2. Comparative immunoblot analysis of glial fibrillary acidic protein in brain extracts from wild type mice 

versus the wobbler mouse model of amyotrophic lateral sclerosis. Shown is a silver-stained protein gel using 
sodium dodecyl sulphate polyacrylamide slab gel electrophoresis for the separation of wild type (wt) brain 
(lane 1) and wobbler (wr) brain (lane 2) samples, as well as identical nitrocellulose replicas used for 
immunoblot analysis. Immunoblots were labelled with antibodies to lamin-B1 and glial fibrillary acidic 
protein (GFAP). In the adjacent panels are shown the statistical analysis of immunoblotting (Student’s t-
test; n=4; **p<0.01). The value of molecular mass standards (x10-3 kDa) is marked on the left side of the 
gel  
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proteomic studies heavily depends on the availability of 
established proteomic data banks of normal tissues.34 

The comparative proteomic analysis of wild type versus 
wobbler brain extracts identified 149 increased and 142 
decreased protein species. Table 1 lists only those 
proteomic hits that were recognized by at least 2 peptides 
and exhibited a 2-fold change in abundance. A higher 
abundance in the wobbler mouse model of amyotrophic 
lateral sclerosis was shown for long-chain-fatty-acid-
CoA ligase, coronin, pyruvate carboxylase, glucose-6-
phosphate-1-dehydrogenase, glycogen phosphorylase, 
formyltetrahydrofolate dehydrogenase. Histone H2A, 
glial fibrillary acidic protein GFAP, phospho-
glucomutase-1, trifunctional enzyme and long-chain 
specific acyl-CoA dehydrogenase. 
Interesting findings in the context of gliosis are the 
increased levels of the astrocyte marker glial fibrillary 
acidic protein GFAP35 and the filamentous-actin binding 
protein coronin-1C of the microglia.36 Decreased brain 
proteins in the wobbler mouse included the scaffolding 
protein named piccolo, myosin regulatory light chain, 
EF-hand domain-containing protein, the actin-binding 
protein neurabin-2, the molecular chaperone alphaB-

crystallin and the nuclear migration protein nudC (Table 
1). Of note is the reduced expression of protein piccolo, 
which has a key role in the organization of the 
presynaptic cytomatrix. In Figure 1 is shown the 
bioinformatic STRING analysis of potential protein-
protein interaction patterns in the altered wobbler brain 
proteome. One of the apparent protein hubs includes the 
glial fibrillary acidic protein. 

Immunoblot analysis of the glial fibrillary acidic 
protein in the wobbler brain 
To confirm the increased abundance of the gliosis marker 
glial fibrillary acidic protein GFAP in the wobbler mouse 
model of amyotrophic lateral sclerosis, as determined by 
mass spectrometry (Table 1), comparative 
immunoblotting was carried out with brain extracts from 
wild type mice versus wobbler mice. Figure 2 clearly 
illustrates a significant increase of glial fibrillary acidic 
protein in the wobbler brain. Previous immunoblot 
analyses of glial fibrillary acidic protein have 
unambigiously established the restricted presence of this 
astrocyte marker in brain tissue and established a 
relatively broad banding pattern which probably reflects 

Table 2. List of identified brain proteins with changed concentration levels in the SOD1 mouse model of 
amyotrophic lateral sclerosis as determined by label-free liquid chromatography tandem mass 
spectrometry. 

Accession number Protein name Peptide 
count 

Confidence 
score 

Anova (p) Fold 
change 

Q91XV3 Brain acid soluble protein 1 3 181.93 0.02500 3.67 
Q60864 Stress-induced-

phosphoprotein 1 
2 111.61 0.00666 3.33 

Q8CDN6 Thioredoxin-like protein 1 2 58.54 0.00584 2.78 
O08756 3-hydroxyacyl-CoA 

dehydrogenase type-2 
2 85.72 0.00811 2.74 

P62259 14-3-3 protein epsilon 2 61.05 0.03096 2.64 
P58771 Tropomyosin alpha-1 chain 2 88.89 0.03876 2.60 
P03995 Glial fibrillary acidic 

protein 
2 105.13 0.03623 2.44 

Q8QZT1 Acetyl-CoA 
acetyltransferase, 
mitochondrial 

4 168.61 0.00588 2.44 

Q7TSJ2 Microtubule-associated 
protein 6 

6 352.07 0.02964 2.30 

P27773 Protein disulfide-isomerase 
A3 

3 97.33 0.01248 2.24 

P45376 Aldose reductase 2 72.22 0.00035 2.18 
Q810U4 Neuronal cell adhesion 

molecule 
2 137.62 0.00765 2.15 

P63101 14-3-3 protein zeta/delta 2 130.27 0.03162 2.04 
Q8BFR5 Elongation factor Tu, 

mitochondrial 
2 157.46 0.00139 2.02 

O08599 Syntaxin-binding protein 1 4 242.76 0.02934 -3.89 
P17183 Gamma-enolase 2 65.20 0.01066 -10.28 
P62737 Actin, aortic smooth muscle 2 60.41 0.00010 -21.19 
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isoforms with slightly differing electrophoretic 
mobility.24 Silver-staining of protein gels showed no 
major change in the overall protein banding pattern 
between wild type and wobbler preparations. The 
immuno-decoration of the nuclear protein lamin-B2 was 
used as a loading control. 

Proteomic identification of altered proteins in the SOD1 
mouse brain 
The increased levels of glial fibrillary acidic protein 
GFAP in the wobbler brain, as determined by mass 
spectrometry (Table 1) and verified by comparative 
immunoblotting (Figure 2), was also shown to occur in 
another murine model of amyotrophic lateral sclerosis, 
the SOD1 mouse.23 
The comparative proteomic analysis of wild type versus 
SOD1 brain extracts identified 150 increased and 51 
decreased protein species. Table 2 lists only those 
proteomic hits that were recognized by at least 2 peptides 
and exhibited a 2-fold change in abundance. Increased 
brain proteins included brain acid soluble protein, stress-
induced-phosphoprotein, thio-redoxin-like protein, 3-
hydroxyacyl-CoA dehydrogenase, 14-3-3 protein 
epsilon, tropomyosin alpha-1, glial fibrillary acidic 
protein GFAP, acetyl-CoA acetyl-transferase, 
microtubule-associated protein, protein disulfide-
isomerase, aldose reductase, neuronal cell adhesion 
molecule and 14-3-3 protein zeta/delta. Drastically 
decreased SOD1 brain-associated proteins were 
identified as elongation factor Tu, syntaxin-binding 
protein 1 and gamma-enolase (Table 2). 

Discussion 
The mass spectrometric analysis of the wobbler mouse 
model of amyotrophic lateral sclerosis15 presented in this 
report has established drastic changes in the brain 
proteome due to the primary abnormality in the 
Vps54 gene.16 The loss of function of the VPS54 protein 
of the multi-subunit GARP complex causes primarily 
impaired vesicular trafficking and protein mis-
sorting,18,37 which is associated with an excitatory-
inhibitory imbalance, spatio-temporal pattern of 
cerebellar degeneration, hippocampal hyperexcitability 
and reduced numbers of interneurons.38-40 The observed 
neurodegeneration and neuroinflammation in the 
wobbler mouse20,21 are typical features that are also 
present in the central nervous system of patients afflicted 
with amyotrophic lateral sclerosis.1,2,12,13 The progressive 
degeneration of upper and lower motor neurons causes 
distinct patterns of muscular atrophy. Mass 
spectrometry-based proteomics has been instrumental in 
the characterization of the skeletal musculature20,22 and 
testis21 of this widely employed mouse model of motor 
neuron disease.17 This report has characterized both the 
wobbler and SOD1 mouse brain, two established models 
of motor neuron disease. 
A striking finding of the proteomic survey of the wobbler 
brain is the increased abundance of two well-established 

glia cell markers, i.e. glial fibrillary acidic protein GFAP, 
a marker of astrocytes,35 and coronin-1C, a marker of 
microglia.36 The higher levels of glial fibrillary acidic 
protein were confirmed by immunoblotting and the same 
proteomic result was also found in the SOD1 model23 of 
primary motor neuronopathy. This strongly suggests the 
occurrence of elevated astrocyte and microglia cell 
populations in motor neuron disease. The increased 
appearance of glial fibrillary acidic protein is frequently 
used in neuropathological studies as a marker protein of 
glial scar formation.41 The glial fibrillary acidic protein is 
a major element of the intermediate filament system of 
astrocytes.35 Thus, the approximately 2-fold increase of 
this protein agrees with the pathobiochemical concept of 
neuro-degenerative processes that are associated with 
astrogliosis in the wobbler and SOD1 brain. 
Neuronal abnormalities may result in a non-specific form 
of reactive gliosis.41 The increased levels of coronin-1C 
are also of pathophysiological importance. Coronins are 
filamentous-actin binding proteins with a homo-trimeric 
configuration. Specific isoforms have been shown to 
locate to microglia.36 Coronin-1C (CORO1C), also 
named Coronin-3, is highly expressed in the mature brain 
and is involved in cellular migration, neurite outgrowth 
and neuron morphogenesis. Coronins probably mediate 
branching within the actin filament network of the 
membrane cytoskeleton. High levels of coronin-3 
expression have previously been described to occur in 
diffuse gliomas.42 Hence, the microglia cell population 
appears to be elevated in the wobbler mouse brain 
agreeing with the concept of reactive gliosis. The 
formation of glial scars is therefore probably associated 
with impaired motor neuron functions at the level of the 
central nervous system. The observed proteomic findings 
of elevated levels of gliosis markers in murine models of 
amyotrophic lateral sclerosis agree with the cellular 
pathogenesis of patients suffering from adult-onset motor 
neuron disease.1,2,12,13  
The proliferation of glial cells, specifically astrocytes, 
plays at least partially a role in the cellular pathogenesis 
of neurodegeneration.43 Astrocytes represent a crucial 
cell type in the central nervous system that are involved 
in the maintenance of neuronal metabolism, synaptic 
function and the blood-brain barrier.44 Pathological 
disturbances cause astrocyte activation, differentiation 
and morphological remodeling. Glial cell dysfunction, 
mainly involving microglia and astrocytes, was clearly 
established to occur in the nervous system of patients 
afflicted with amyotrophic lateral sclerosis.45 This agrees 
with the pathoproteomic findings presented in this report 
and the elevated levels of both microglia and astrocyte 
marker proteins in wobbler and SOD1 brain preparations. 
Interestingly, the removal of activating factors from 
reactive astrocytes was demonstrated to trigger a slowing 
of disease progression in the SOD1 mouse model of 
motor neuron disease.46 Thus, the prevention or reversal 
of reactive gliosis and reduction of activated astrocytes 
may present a potential therapeutic target to address a 
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serious histopathological complication of amyotrophic 
lateral sclerosis. 
Besides glia cell proteins, other proteomic changes were 
established to occur in proteoforms that are involved in 
the maintenance of cytoskeletal networks, energy 
metabolism and the cellular stress response. These 
complex alterations in the brain agree with the down-
stream changes in the skeletal musculature. The 
proteomic profiling of mouse models of primary motor 
neuronopathy has shown that the progressive 
degeneration of distinct motor neurons alters the density 
and/or fibre-type specific isoform expression patter of a 
large number of diverse proteins that are involved in 
muscle contraction, energy metabolism, metabolite 
transportation, regulation of ion homeostasis, the cellular 
stress response, structural maintenance and the 
cytoskeleton.20,22,23  
The results from systematic proteomic profiling studies 
of both the brain and skeletal musculature can now be 
used to establish new biomarker candidates to improve 
diagnostic and prognostic approaches14 and identify 
novel therapeutic targets to treat the highly complex 
neuromuscular pathogenesis of amyotrophic lateral 
sclerosis.47 Besides evaluating tissue-related changes in 
motor neuron disease, an important aspect of biomarker 
research is the identification of biofluid markers in serum 
or cerebrospinal fluid.14,48 Biofluid markers of clinical 
interest include GFAP and neurofilament light chain.49-53 
The evaluation of a panel of serum biomarker candidates 
for the improved diagnosis and prognosis of amyotrophic 
lateral sclerosis, which took into account the critical 
correlation between the altered abundance of biomarkers 
and several clinical parameters, was recently carried out 
by Falzone et al.54 Interestingly, this analysis of 
specimens from a large cohort of patients afflicted with 
motor neuron disease revealed that serum GFAP levels 
were elevated in amyotrophic lateral sclerosis patients 
that suffer from cognitive-behavioral impairments, as 
compared to patients with normal cognition.54 
Thus, altered GFAP concentration represents a promising 
diagnostic indicator that reflects extra-motor 
involvement in amyotrophic lateral sclerosis, i.e. 
complications due to frontotemporal dementia or 
cognitive impairmen.53,54 In addition, neurofilament light 
chain (NfL), one of the polypeptide chains of the 
neurofilament triplet that structurally supports the 
neuronal cytoskeleton of axons, was shown to be a 
suitable diagnostic marker and strongest predictor of 
patient survival.51,52,54 Ubiquitin C-terminal hydrolase 
UCHL1 was established as a robust prognostic indicator 
for stratifying slow disease progression and survival rates 
in patients with low levels of neurofilament light chain.54 
These findings demonstrate the clinical importance of 
established novel biomarkers for the improved diagnosis, 
prognosis and therapeutic monitoring of amyotrophic 
lateral sclerosis.55 In addition to changes in minimally 
invasive biofluid markers and invasive tissue-associated 
disease indicators, another important category of 

amyotrophic lateral sclerosis markers are non-invasive 
imaging biomarkers of neurodegenerative processes. An 
early recognition pattern seen in magnetic resonance 
imaging (MRI) is the motor band sign (MBS), which can 
be helpful in the early differential diagnosis of motor 
neuron diseases as a marker for upper motor neuron 
involvement.56-58 Thus, the combined usage of diagnostic 
and prognostic biomarkers in serum, cerebrospinal fluid 
and suitable tissue biopsies, in combination with 
advanced imaging technology, can be valuable for the 
improved evaluation of amyotrophic lateral sclerosis. 

Motor neuron disease, which can be both spontaneous or 
familial, is a heterogeneous neurodegenerative disorder. 
Amyotrophic lateral sclerosis represents the most 
common adult-onset form with progressive muscular 
weakness being one of the clinical hallmarks of this type 
of motor neuron disease. The mass spectrometry-based 
biochemical profiling of brain extracts from the wobbler 
mouse model of amyotrophic lateral sclerosis has 
revealed complex changes in its proteome, affecting 
especially the expression of glia cell markers. Elevated 
levels of the astrocyte marker glial fibrillary acidic 
protein GFAP and the microglia marker coronin-1C in 
the wobbler brain strongly indicate that reactive gliosis 
plays a central role in motor neuron disease. Thus, 
abnormal functioning of the trans-Golgi network and 
impaired tethering of retrograde transport vesicles due to 
loss of VPS54 function has severe down-stream effects 
in the brain.  

In conclusion, progressive astrogliosis is clearly evident 
in the wobbler brain and this could be a crucial 
pathophysiological factor during progressive 
neurodegeneration in amyotrophic lateral sclerosis. 
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