Infectious complications of endourological treatment of kidney stones: A meta-analysis

Rawa Bapir ^{1, 13}, Kamran Hassan Bhatti ^{2, 13}, Ahmed Eliwa ^{3, 13}, Herney Andrés García-Perdomo ^{4, 13}, Nazim Gherabi ^{5, 13}, Derek Hennessey ^{6, 13}, Panagiotis Mourmouris ^{7, 13}, Adama Ouattara ^{8, 13}, Gianpaolo Perletti ^{9, 10, 13}, Joseph Philipraj ^{11, 13}, Alberto Trinchieri ^{12, 13}, Noor Buchholz ¹³

⁸ Division of Urology, Souro Sanou University Teaching Hospital, Bobo-Dioulasso, Burkina Faso;

¹⁰ Faculty of Medicine and Medical Sciences, Ghent University, Belgium;

¹² Urology School, University of Milan, Milan, Italy;

LIST OF SELECTED PAPERS AND PICO TABLES

RIRS vs PCNL

- 1. Agrawal MS, Mishra D. Minimally-invasive percutaneous nephrolithotomy versus retrograde intrarenal surgery for treatment of medium sized (10-20 mm) renal calculi-a prospective study Journal of Endourology. 2016; 30(Suppl2):A204-A205.
- 2. Fayad AS, Elsheikh MG, Ghoneima W. Tubeless mini-percutaneous nephrolithotomy versus retrograde intrarenal surgery for lower calyceal stones of ≤ 2 cm: A prospective randomised controlled study. Arab Journal of Urology. 2017; 15:36-41.
- 3.~Gu~XJ,~Lu~JL,~Xu~Y.~Treatment~of~large~impacted~proximal~ureteral~stones:~randomized~comparison~of~minimally~invasive~percutaneous~antegrade~ureterolithotripsy~versus~retrograde~ureterolithotripsy.~World~J~Urol.~2013;~31:1605-1610.
- 4. Jain M, Manohar C, Nagabhushan M, Keshavamurthy R. A comparative study of minimally invasive percutaneous nephrolithotomy and retrograde intrarenal surgery for solitary renal stone of 1-2 cm Urology Annals. 2021; 13:226-231.
- 5. Jiang K, Chen H, Yu X, Chen Z, et al. The "all-seeing needle" micro-PCNL versus flexible ureterorenoscopy for lower calyceal stones of \leq 2 cm. Urolithiasis. 2019; 47:201-206.
- 6. Jin L, Yang B, Zhou Z, Li N. Comparative Efficacy on Flexible Ureteroscopy Lithotripsy and Miniaturized Percutaneous Nephrolithotomy for the Treatment of Medium-Sized Lower-Pole Renal Calculi. J Endourol. 2019; 33:914-919.
- 7. Kumar A, Kumar N, Vasudeva P, et al. A prospective, randomized comparison of shock wave lithotripsy, retrograde intrarenal surgery and miniperc for treatment of 1 to 2 cm radiolucent lower calyceal renal calculi: a single center experience. J Urol. 2015; 193:160-164.
- 8. Lee JW, Park J, Lee SB, et al. Mini-percutaneous Nephrolithotomy vs Retrograde Intrarenal Surgery for Renal Stones Larger Than 10 mm: A Prospective Randomized Controlled Trial. Urology 2015; 86:873-877.
- 9. Li JW, Wang F, Cai FZ, Gao HZ. [Staged retrograde flexible ureteroscopic lithotripsy versus miniaturized percutaneous nephrolithotomy for renal stones of 2-4 cm in diameter: a randomized controlled trial]. Nan Fang Yi Ke Da Xue Xue Bao. 2016; 36:1672-1676. Chinese.
- 10. Mhaske S, Singh M, Mulay A, et al. Miniaturized percutaneous nephrolithotomy versus retrograde intrarenal surgery in the treatment of renal stones with a diameter &-lt;15 mm: A 3-year open-label prospective study. Urology Annals. 2018; 10:165-169.
- 11. Oo SM. Outcomes of minipercutaneous nephrolithotomy versus retrograde intrarenal surgery in lower pole renal stone. International Journal of Urology. 2020; 27(Suppl1):40.
- 12. Sabnis RB, Ganesamoni R, Doshi A, et al. Micropercutaneous nephrolithotomy (microperc) vs retrograde intrarenal surgery for the management of small renal calculi: a randomized controlled trial. BJU Int. 2013; 112:355-61.

¹ Smart Health Tower, Sulaymaniyah, Kurdistan region, Iraq;

² Urology Department, HMC, Hamad Medical Corporation, Oatar;

³ Department of Urology, Zagazig University, Zagazig, Sharkia, Egypt;

⁴ Universidad del Valle, Cali, Colombia;

⁵ Faculty of Medicine Algiers 1, Algiers, Algeria;

⁶ Department of Urology, Mercy University Hospital, Cork, Ireland;

⁷ 2nd Department of Urology, National and Kapodistrian University of Athens, Sismanoglio Hospital, Athens, Greece;

⁹ Department of Biotechnology and Life Sciences, Section of Medical and Surgical Sciences, University of Insubria, Varese, Italy;

¹¹ Department of Urology, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth, Puducherry, India;

¹³ U-merge Ltd. (Urology for emerging countries), London-Athens-Dubai *.

^{*} U-merge Ltd. (Urology for Emerging Countries) is an academic urological platform dedicated to facilitate knowledge transfer in urology on all levels from developed to emerging countries. U-merge Ltd. is registered with the Companies House in London/ UK. www.U-merge.com

- 13. Wen J, Xu G, Du C, Wang B. Minimally invasive percutaneous nephrolithotomy versus endoscopic combined intrarenal surgery with flexible ureteroscope for partial staghorn calculi: A randomised controlled trial. International Journal of Surgery. 2016; 28:22-27.
- 14. Zeng G, Zhang T, Agrawal M, et al. Super-mini percutaneous nephrolithotomy (SMP) vs retrograde intrarenal surgery for the treatment of 1-2 cm lower-pole renal calculi: an international multicentre randomised controlled trial. BJU International. 2018; 122:1034-1040.
- 15. Zhang H, Hong TY, Li G, et al. Comparison of the Efficacy of Ultra-Mini PCNL, Flexible Ureteroscopy, and Shock Wave Lithotripsy on the Treatment of 1-2 cm Lower Pole Renal Calculi. Urol Int. 2019; 102:153-159.

Author, year	Population	Intervention	Comparison	Fever	SIRS	Sepsis
Agrawal 2016	48 patients renal calculi of 10-20 mm size	retrograde Intrarenal Surgery (RIRS) N=24	minimally-invasive PCNL N=24	2/24 vs 2/24		
Fayad 2016	120 patients lower calyceal stones of less than 2 cm	retrograde intrarenal surgery (RIRS) N=60	mini-percutaneous nephrolithotomy (mini-PCNL) N=60	3/60 vs 2/60		
Gu 2013	59 patients with impacted proximal ureteral stones 1.5 cm	retrograde ureterolithotripsy (RIRS) N=29	minimally invasive percutaneous antegrade ureterolithotripsy mini-PCNL N=30	17/29 vs 5/30		
Jain 2021	80 patients renal stones 1-2 cm	RIRS 4-40	mini-PCNL N=40			7/40 vs 0/40
Jiang 2019	116 patients with lower calyceal stones ≤ 2 cm	flexible ureterorenoscopy (FURS) N=58	micro percutaneous nephrolithotomy (micro-PCNL) N=58	2/58 vs 1/58		
Jin 2019	220 patients with lower- pole renal calculi (1-2 cm)	flexible ureteroscopy lithotripsy (FURL) N=110	miniaturized percutaneous nephrolithotomy (m-PCNL) N=110	4/110 vs 6/110		0/110 vs 1/110
Kumar 2014	126 patients with a single 1-2 cm radiolucent lower calyceal renal stone	retrograde intrarenal surgery N=43 shock wave lithotripsy N=42 (not included)	Miniperc N=41	2/43* vs 2/41* UTI*		
Lee 2015	70 patients with renal stones > 10 mm	retrograde intrarenal surgery (RIRS) N=35	miniaturized percutaneous nephrolithotomy (mini-PCNL) N=35	2/35 vs 2/35		
Li 2016	70 patients with renal stones of 2-4 cm in diameter	FURS N=35	PCNL N=35	1/35 vs 2/35		

Mhaske 2017	80 patients renal stones with a diameter < 15 mm	retrograde intrarenal surgery (RIRS) N=40	miniaturized percutaneous nephrolithotomy (mini-perc) N= 40	4/40 vs 2/40	
00 2020	patients 60 1- 2 cm sized lower pole stone	retrograde intrarenal surgery N=30	minipercutaneous nephrolithotomy N=30		5/30 vs 3/30
Sabnis 2013	70 patients renal calculi < 1.5 cm	retrograde intrarenal surgery (RIRS) N=35	micropercutaneous nephrolithotomy (microperc) N=35	4/35 vs 3/35	
Wen 2016	67 patients with partial staghorn calculi	endoscopic combined intra- Renal surgery (ECIRS) N=33	minimally invasive percutaneous nephrolithotomy (MPCNL) N=34	10/34 vs 8/34	2/34 vs 3/34
Zeng 2018	160 patients 1-2 cm lower- pole renal calculi	retrograde intrarenal surgery (RIRS) N=80	super-mini percutaneous nephrolithotomy (SMP) N=80	6/80 vs 4/80	
Zhang 2019	180 patients with single radio-opaque lower caliceal calculi of 1-2 cm	flexible ureteroscopy FURS N=60 shock wave lithotripsy (SWL N=60 (not included)	ultra-mini PCNL (UMP) N=60	3/60 vs 2/60	

MINI vs PCNL

- 1. Agrawal M, Mishra D. Minimally-invasive percutaneous nephrolithotomy versus conventional percutaneous nephrolithotomy for treatment of large sized (20-30 mm) renal calculi-a prospective study. J Endourol. 2018; 32(Suppl2):A59-A60.
- 2. Bozzini G, Aydogan TB, Müller A, et al. A comparison among PCNL, Miniperc and Ultraminiperc for lower calyceal stones between 1 and 2 cm: A prospective, comparative, multicenter and randomised study. BMC Urology. 2020; 20:1.
- 3. Cheng F, Yu W, Zhang X, et al. Minimally invasive tract in percutaneous nephrolithotomy for renal stones. J Endourol. 2010; 24:1579-82.
- 4. Guddeti RS, Hegde P, Chawla A, et al. Super-mini percutaneous nephrolithotomy (PCNL) vs standard PCNL for the management of renal calculi of < 2 cm: a randomised controlled study. BJU Int. 2020; 126:273-279.
- 5. Güler A, Erbin A, Ucpinar B, et al. Comparison of miniaturized percutaneous nephrolithotomy and standard percutaneous nephrolithotomy for the treatment of large kidney stones: a randomized prospective study. Urolithiasis. 2019; 47:289-295.
- 6. Sakr A, Salem E, Kamel M, et al. Minimally invasive percutaneous nephrolithotomy vs standard PCNL for management of renal stones in the flank-free modified supine position: single-center experience. Urolithiasis. 2017; 45:585-589.
- 7. Tepeler A, Akman T, Silay MS, et al. Comparison of intrarenal pelvic pressure during micro-percutaneous nephrolithotomy and conventional percutaneous nephrolithotomy. Urolithiasis. 2014; 42:275-279.
- 8. Zeng G, Cai C, Duan X, et al. Mini Percutaneous Nephrolithotomy Is a Noninferior Modality to Standard Percutaneous Nephrolithotomy for the Management of 20-40 mm Renal Calculi: A Multicenter Randomized Controlled Trial. Eur Urol. 2021; 79:114-121.
- 9. Sabnis R, Ganpule A, Desai M. Is there any rationale of preferring ultraminiperc (MIP S) over miniperc(MIP M)?Prospective randomized study. J Endourol. 2016; 30(Suppl2):A376-A377.

Author, year	Population	Intervention	Comparison	Fever	SIRS	Sepsis
Agrawal 2018	renal calculi of 20-30 mm	MIP-M nephroscope	conventional nephroscope	2/20 vs		
2010	0.2000	12 F N=20	20.8 F N=20	2/20		
Bozzini 2020	lower calyceal stones 1-2 cm	MP 20 F UMP 6 F N=47	PCNL 24 F N=44	2/47* 1/41* vs		
		N=41		4/44* UTI*		
Cheng 2010		mini 8-9.8F N=69 (72 renal units)	standard 20.8F N=111 (115 renal units)	15/72 vs 27/115		
Guddeti 2020	renal calculi of < 2 cm	mini 12F N=75	standard 20.8F N=75	1/75 vs 5/75 Fever > 38°		
Guler 2018	renal stones ≥ 2 cm	mini 12F N=51	standard 26F N=46	1/51 vs 0/46		
Sakr 2017	Renal stones 2-3 cm	mPCNL N=75 87 renal units	sPCNL N=75 81 renal units	8/87 vs 5/81		
Tepeler 2014	1- 3-cm renal calculi resistant to shock wave lithotripsy	mPCNL N=10	conventional PCNL N=10	1/10 vs 0/10		
Zeng 2021	20-40 mm renal calculi	miniPCNL	standard-PCNL	97/992 vs 81/988	8/992 vs 6/988	

Paper considered for qualitative analysis

	Sabnis 2016	stone size	ultraminiPCNL	miniPCNL	SIRS	
- 1		< 1.5 cm	7.5F	12F	1/30	
			N-30	N-30	0/30	

Tubeless vs non tubeless

List of papers

- 1. Agrawal MS, Agrawal M, Gupta A, et al. A randomized comparison of tubeless and standard percutaneous nephrolithotomy. J Endourol. 2008; 22:439-442.
- 2. Bhat S, Lal J, Paul F. A randomized controlled study comparing the standard, tubeless, and totally tubeless percutaneous nephrolithotomy procedures for renal stones from a tertiary care hospital Indian J Urol. 2017; 33:310-314.
- 3. Istanbulluoglu MO, Ozturk B, Gonen M, et al. Effectiveness of totally tubeless percutaneous nephrolithotomy in selected patients: A prospective randomized study. International Urol Nephrol. 2009; 41:541-545.
- 4. Lu Y, Ping J-G, Zhao X-J, et al. Randomized prospective trial of tubeless versus conventional minimally invasive percutaneous nephrolithotomy. World J Urol. 2013; 31:1303-1307.
- 5. Mishra S, Sabnis RB, Kurien A, et al. Questioning the wisdom of tubeless percutaneous nephrolithotomy (PCNL): a prospective randomized controlled study of early tube removal vs tubeless PCNL. BJU Int. 2010; 106:1045-8.
- 6. Moosanejad N, Firouzian A, Hashemi SA, et al. Comparison of totally tubeless percutaneous nephrolithotomy for kidney stones: A randomized, clinical trial. Braz J Med Biol Res. 2016; 49:e4878.

Author, year	Population	Intervention	Comparison	Fever	SIRS	Sepsis
Agrawal 2008	tubeless or nephrostomy-free (PCNL)	standard N=101	tubeless N=101	5/101 vs 4/101		
Bhat 2017	patients who underwent PCNL	standard N=25	tubeless/ completely tubeless N=25+25	2/25 vs 3/50		
Moosanejad 2016	patients who underwent PCNL	standard N=40	tubeless N=44	3/40 vs 2/44		
Lu 2013	patients who underwent PCNL < 4 cm	standard N=16	tubeless N=16	2/16 vs 3/16		
Istanbulluoglu 2009	patients who underwent PCNL	standard N=16	tubeless N=16	1/45 vs 0/45		
Mishra 2010	simple stone of < 3 cm, no significant bleeding, no perforation, single-tract access	early removal N=11	tubeless N=11	2/11 vs 1/11		

Tubeless vs tubeless with sealant/infiltration with bupivacaine

- 1. Shah HN, Hegde S, Shah JN, et al. A Prospective, Randomized Trial Evaluating the Safety and Efficacy of Fibrin Sealant in Tubeless Percutaneous Nephrolithotomy. J Urol. 2006; 176:2488-2493.
- 2. Titaram S, Nualyong C, Taweemonkongsap T, et al. The impact of gelatin-sealant in the access tract after tubeless percutaneous nephrolithotomy: A randomized controlled trial. J Med Ass Thai. 2017; 100(Suppl2):S132-S137.
- 3. Mankongsrisuk T, Nualyong C, Tantiwong A, et al. Efficacy of nephrostomy tract infiltration with bupivacaine before and after tubeless percutaneous nephrolithotomy: A randomized control study. J Med Ass Thai. 2017; 100(Suppl2):S138-S143.

Author, year	Population	Intervention	Comparison	Fever	SIRS	Sepsis
Shah 2006	patients who underwent PCNL	tubeless with sealant N=32	tubeless N=31	1/32 vs 2/31		
Titaram 2017	patients who underwent PCNL	tubeless with sealant N=41	tubeless N=41	19/41 vs 15/41	1/41 vs 6/46	1/41 vs 0/41
Mankongsrisuk 2017	patients who underwent PCNL	infiltration with bupivacaine N=46	standard N=23	7/46 vs 6/23		

Suctioning sheath

- 1. Huang J, Song L, Xie D, et al. A Randomized Study of Minimally Invasive Percutaneous Nephrolithotomy (MPCNL) with the aid of a patented suctioning sheath in the treatment of renal calculus complicated by pyonephrosis by one surgery BMC Urology. 2016; 16:1 Article Number 71.
- 2. Lai D, Xu W, Chen M, et al. Minimally Invasive Percutaneous Nephrolithotomy with a Novel Vacuum-assisted Access Sheath for obstructive calculous pyonephrosis: A Randomized Study. Urol J. 2020; 17:474-479.
- 3. Zhong W, Wen J, Peng L, Zeng G. Enhanced super-mini-PCNL (eSMP): low renal pelvic pressure and high stone removal efficiency in a prospective randomized controlled trial. World J Urol. 2021; 39:929-934.
- 4. Eisner B, Agrawal S, Desai M, et al. Initial human experience with a novel stone aspiration device used during ureteroscopic lithotripsy for renal stones. J Urol. 2020; 203(Suppl4):e211.

Author,year	Population	Intervention	Comparison	Fever	SIRS	Sepsis
Huang 2016	minimally invasive percutaneous nephrolithotomy (MPCNL) for calculus pyonephrosis	suctioning sheath N=91	traditional N=91	10/91 vs 25/91 Fever ≥ 38.5 °C		
Lai 2020	obstructive calculous pyonephrosis	20 F Vacuum-assisted Access Sheath N=38	Amplatz sheath N=38	5/38 vs 8/38 Fever ≥ 38.5 °C		
Zhong 2021	2-5 cm renal calculus	enhanced-SMP (eSMP) N=46	conventional mini-PCNL (mPCNL) N=47	2/46 vs 6/47		
Eisner 2020	URS Renal stones 5-15 mm	aspiration device N=10	basket retrieving N=10	0/10* vs 1/10* UTI*		

Comparison of perioperative prophylaxis with/without short oral antibiotic course in patients with higher risk of infectious complications

1. Sur RL, Krambeck AE, Large T, et al. A Randomized Controlled Trial of Preoperative Prophylactic Antibiotics for Percutaneous Nephrolithotomy in Moderate to High Infectious Risk Population: A Report from the EDGE Consortium. J Urol. 2021; 205:1379-1386.

Author, year	Population	Intervention	Comparison	Fever	SIRS	Sepsis
HIGH RISK			1 7 5 57 1			
Sur 2021	stones requiring PCNL with	2 days	7 days of preoperative	3/55		14/55
	positive preoperative urine culture or existing indwelling urinary drainage tube	N=55	antibiotics N=68	4/68		10/68

Comparison of perioperative prophylaxis with/without short oral antibiotic course

- 1. Bag S, Kumar S, Taneja N, et al. One week of nitrofurantoin before percutaneous nephrolithotomy significantly reduces upper tract infection and urosepsis: A prospective controlled study. Urology. 2011; 77:45-49.
- 2. Chew BH, Miller NL, Abbott JE, et al. A Randomized Controlled Trial of Preoperative Prophylactic Antibiotics Prior to Percutaneous Nephrolithotomy in a Low Infectious Risk Population: A Report from the EDGE Consortium. J Urol. 2018; 200:801-808.
- 3. Demirtas A, Yildirim YE, Sofikerim M, et al. Comparison of infection and urosepsis rates of ciprofloxacin and ceftriaxone prophylaxis before percutaneous nephrolithotomy: a prospective and randomised study. Scientific World Journal. 2012; 2012:916381.
- 4. Dogan HS, Sahin A, Cetinkaya Y, et al. Antibiotic prophylaxis in percutaneous nephrolithotomy: prospective study in 81 patients. J Endourol. 2002; 16:649-653.
- 5. Mariappan P, Smith G, Moussa SA, Tolley DA. One week of ciprofloxacin before percutaneous nephrolithotomy significantly reduces upper tract infection and urosepsis: a prospective controlled study. BJU Int. 2006; 98:1075-9.
- 6. Seyrek M, Binbay M, Yuruk E, et al. Perioperative prophylaxis for percutaneous nephrolithotomy: randomized study concerning the drug and dosage. J Endourol. 2012; 26:1431-6.
- 7. Tuzel E, Aktepe OC, Akdogan B. Prospective comparative study of two protocols of antibiotic prophylaxis in percutaneous nephrolithotomy. J Endourol. 2013; 27:172-6.

Author, year	Population	Intervention	Comparison	Fever	SIRS	Sepsis
Bag 2011	patients who underwent PCNL with stones 2.5 cm and/or hydronephrosis and sterile urine	standard perioperative antibiotic prophylaxis N=53	perioperative antibiotic prophylaxis plus sustained- released nitrofurantoin 100 mg b.i.d. for 7 days preoperatively N=48		26/53 vs 9/48	
Chew 2018	patient who underwent PCNL with negative preoperative urine culture and no urinary drain	perioperative ampicillin and gentamicin N=43	perioperative ampicillin and gentamicin plus nitrofurantoin 100 mg twice daily for 7 days preoperatively N=43			5/43 vs 6/43
Demirtas 2012	patients who underwent PCNL with negative culture	Ciprofloxacin single dose or single dose plus additional dose at 12 hours N=15+15	Ciprofloxacin Until nephrostomy tube was extracted N=15		1/15 2/15 (3/30) vs 4/15	
	patients who underwent PCNL with negative culture	Ceftriaxone single dose or single dose plus additional dose at 12 hours N=15+15	Ceftriaxone until nephrostomy tube was extracted N=15		2/15 0/15 (2/30) vs 2/15	
Dogan 2002	PCNL with sterile urine preoperatively	single intravenous ofloxacin (200 mg) N=43	Ofloxacin (400 mg) until the nephrostomy catheter was removed N=38	9/43 vs 8/38		1/43* vs 1/38* Bacteremia*
Mariappan 2006	patients who underwent PCNL of larger stones or > 20 mm dilated calyceal system with sterile midstream urine culture before surgery	Gentamicin 5 mg/kg single dose N=46	Gentamicin 5 mg/kg single dose + ciprofloxacin 250 mg BID for 7 days N=52		18/46 vs 7/52	
Seyrek 2012	patients who underwent PCNL	Sulbactam/am picillin single dose prophylaxis or single dose prophylaxis plus additional dose at 12 hours N=31+33	antibiotic until the nephrostomy tube removal N=31		4/31 5/33 (9/64) vs 4/31	

	patients who underwent PCNL	Cefuroxime single dose prophylaxis or single dose prophylaxis plus additional dose at 12 hours N=32+32	antibiotic until the nephrostomy tube removal N=32		5/32 8/32 (13/64) 4/32	
Tuzel 2013	patients who underwent PCNL with preoperative sterile urine	single-dose of ceftriaxone N=36	single-dose of ceftriaxone plus oral 3rd generation cephalosporin until nephrostomy withdrawal N=37	4/36 6/37 Fever of > 38°C		0

Antibiotic prophylaxis for PCNL (comparison of antibiotics)

- 1. Song F, Liu C, Zhang J, et al. Antibacterial effect of Fosfomycin tromethamine on the bacteria inside urinary infection stones. Int Urol Nephrol. 2020; 52:645-654.
- 2. Taken K, Asik A, Eryilmaz R, et al. Comparison of ceftriaxone and cefazolin sodium antibiotic prophylaxis in terms of SIRS/urosepsis rates in patients undergoing percutaneous nephrolithotomy, Journal of Urological Surgery 2019; 6:2(111-117).

Plus, two studies included in the previous section (Demirtas 2012, Seyrek 2012)

Author, year	Population	Intervention	Comparison	Fever	SIRS	Sepsis
Demirtas 2012	patients who underwent PCNL with negative culture	ciprofloxacin N=45	ceftriaxone N=45		7/45 vs 4/45	3/45 vs 0/45
Seyrek 2012	patients who underwent PCNL	sulbactam- ampicillin N=95	cefuroxime N=96		13/95 vs 17/96	1/95 vs 1/96 Death 1/95 vs 0/96
Song 2020	patients who underwent PCNL with pre-operative negative urine culture	single dose fosfomycin oral 3 g N = 30	cefuroxime IV 3 gr N = 31	7/30 vs 9/31		3/30 vs 10/31 SOFA=>2
Taken 2019	patients who underwent PCNL	ceftriaxone N=30 cefazoline sodium	cefazoline sodium N=32		7/30 4/32	2/30 2/32

Antibiotic prophylaxis for PCNL (vs placebo)

1. Fourcade RO. Antibiotic prophylaxis with cefotaxime in endoscopic extraction of upper urinary tract stones: a randomized study. The Cefotaxime Cooperative Group. J Antimicrob Chemother. 1990; 26(supplA):77-83.

Author,year	Population	Intervention	Comparison	Fever	SIRS	Sepsis
Fourcade 1990	patients who underwent	cefotaxime 1 g N=27	placebo N=22	3/27* 7/22*		
	PCNL with Sterile urine			Bacteriuria*		

Antibiotic prophylaxis for RIRS (vs placebo)
1. Zhao Z, Fan J, Sun H, et al. Recommended antibiotic prophylaxis regimen in retrograde intrarenal surgery: evidence from a randomised controlled trial. BJU Int. 2019; 124:496-503.

Author,year	Population	Intervention	Comparison	Fever	SIRS	Sepsis
Zhao 2019	RIRS in patients with renal stones with preoperative	ciprofloxacin 200 mg i.v. at 30 min before RIRS N=142	placebo N=142		7/142 vs 6/142 vs 14/142	
	sterile urine	ciprofloxacin 200 mg i.v. at 30 min before RIRS and after 6 hours N=142			SIRS	

RISK OF BIAS

RIRS vs PCNL

Studies	D1	D2	D3	D4	D5	Overall			
Agrawal 2016									Low Risk
Fayad 2016								•	Some concerns
Gu 2013									High risk
Jain 2021									
Jiang 2019									
Jin 2019									
Kumar 2014									
Lee 2015									
Li 2016									
Mhaske 2017									
OO 2020									
Sabnis 2013									
Wen 2016									
Zeng 2018									
Zhang 2019									
D1: Randomisation D2: Deviations from D3: Missing outcom D4: Measurement o D5: Selection of the	the inte e data. f the ou	nded in		tions.			Ŋ Į		

Mini vs standard PCNL

Tubeless vs standard - tubeless vs tubeless with sealant/bupivacaine infiltration

Studies	D1	D2	D3	D4	D5	Overall		
Agrawal 2008								Low Risk
Bhat 2017							•	Some concerns
Moosanejad 2016								High risk
Lu 2013								
Istanbulluoglu 2009								
Mishra 2010								
Shah 2006								
Titaram 2017								
Mankongsrisuk 2017								
D1: Randomisation D2: Deviations from D3: Missing outcom	n the inte		ntervent	ions.				
D4: Measurement	of the out							

Suctioning sheath

Studies	D1	D2	D3	D4	D5	Overall		
Huang 2016								Low Risk
Lai 2020							•	Some concerns
Zhong 2021								High risk
Eisner 2020								

- D1: Randomisation process.
 D2: Deviations from the intended interventions.
 D3: Missing outcome data.
 D4: Measurement of the outcome.
 D5: Selection of the reported result

D5: Selection of the reported result

Antibiotic prophylaxis

Studies	D1	D2	D3	D4	D5	Overall		
Sur 2021								Low Risk
Bag 2011							•	Some concerns
Chew 2018								High risk
Tuzel 2013								
Seyrek 2012								
Mariappan 2006								
Dogan 2002								
Demirtas 2012								
Song 2020								
Taken 2019								
Fourcade 1990								
Zhao 2019								

- D3: Missing outcome data.
- D4: Measurement of the outcome.
- D5: Selection of the reported result

SUMMARY OF FINDINGS

Table 1a.

Post-operative complications of retrograde intrarenal surgery (RIRS) vs. percutaneous nephrolithotomy (PCNL).

Post-operative Complications of retrograde intrarenal surgery (RIRS) vs. percutaneous nephrolithotomy (PCNL)

Patient or population: male/female patients undergoing renal stone procedures

Settings: inpatient Intervention: RIRS Comparison: PCNL

Outcomes		comparative risks 5% CI)	effect	No of Participants	Quality of the evidence	Comments
	Assumed risk	Corresponding risk	(95% CI)	(studies or comparisons)	(GRADE)	
	Comparison	Intervention				
Fever	63.86 per 1000	95.07 per 1000 (63.26 to 140.18)	OR: 1.54 (0.99 to 2.39)	1285 (13)	⊕⊕⊕⊙ Moderate	Reasons for upgrading: none Reasons for downgrading: -risk of bias
Sepsis	32.71 per 1000	48.88 per 1000 (12.35 to 173.32)	OR: 1.52 (0.37 to 6.20)	428 (4)	⊕⊕⊕⊙ Moderate	Reasons for upgrading: none Reasons for downgrading: -risk of bias

The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval; OR: Odds Ratio

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

Table 1b.

Post-operative complications of miniaturized percutaneous nephrolithotomy (mini-PCNL) vs. standard PCNL.

Post-operative Complications of miniaturized percutaneous nephrolithotomy (mini-PCNL) vs. standard PCNL

Patient or population: male/female patients undergoing renal stone procedures

Settings: inpatient Intervention: mini-PCNL Comparison: standard PCNL

Outcomes		comparative risks 5% CI)	effect	Participants	Quality of the evidence	Comments
risk	Corresponding risk	(95% CI)	(studies or comparisons)	(GRADE)	77 %	
	Comparison	Intervention				
Fever		98.83 per 1000 (77.47 to 124.55)	OR: 1.11 (0.85 to 1.44)	2774 (8)	Moderate	Reasons for upgrading: none Reasons for downgrading: -risk of bias

The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval; OR: Odds Ratio

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

Table 1c.

Post-operative complications of tubeless percutaneous nephrolithotomy (PCNL) vs. standard percutaneous nephrolithotomy (PCNL).

Post-operative Complications of tubeless percutaneous nephrolithotomy (PCNL) vs. standard percutaneous nephrolithotomy (PCNL)

Patient or population: male/female patients undergoing renal stone procedures

Settings: inpatient

Intervention: tubeless PCNL Comparison: standard PCNL

Outcomes		omparative risks 5% CI)	Relative effect (95% CI)	Participants		Comments
	Assumed risk	Corresponding risk		(studies or comparisons)	(GRADE)	
	Comparison	Intervention				
Fever		48.02 per 1000 (22.35 to 98.80)	OR: 0.75 (0.34 to 1.63)	505 (6)	Moderate	Reasons for upgrading: none Reasons for downgrading: -risk of bias

The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval; OR: Odds Ratio

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

Table 1d.

Post-operative percutaneous nephrolithotomy (PCNL) with suctioning sheath vs. standard PCNL.

Post-operative percutaneous nephrolithotomy (PCNL) with suctioning sheath vs. standard PCNL

Patient or population: male/female patients undergoing renal stone procedures

Settings: inpatient

Intervention: PCNL with suctioning sheath

Comparison: standard PCNL

Outcomes		comparative risks 5% CI)	effect	Participants	Quality of the evidence	Comments	
	Assumed risk	Corresponding risk	(95% CI)	(studies or comparisons)	(GRADE)		
	Comparison	Intervention					
Fever	221.59 per 1000	95.29 per 1000 (53.86 to 166.15)	OR 0.37 (0.20 to 0.70)	351 (3)	⊕⊕⊙⊙ Low	Reasons for upgrading: none Reasons for downgrading: -risk of bias -imprecision	

The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval; OR: Odds Ratio

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

Table 1e.

Post-operative complications of percutaneous nephrolithotomy (PCNL) with simple perioperative antibiotic prophylaxis (PAP) plus a short oral antibiotic course vs. PCNL with simple PAP.

Post-operative Complications of percutaneous nephrolithotomy (PCNL) with simple perioperative antibiotic prophylaxis (PAP) plus a short oral antibiotic course vs. PCNL with simple PAP

Patient or population: male/female patients undergoing renal stone procedures

Settings: inpatient

Intervention: PCNL with simple PAP plus a short oral antibiotic course

Comparison: PCNL with simple PAP

Outcomes		comparative risks 5% CI)	effect	No of Participants (studies or comparisons)	Quality of the evidence	Comments
	Assumed risk	Corresponding risk			(GRADE)	
	Comparison	Intervention			1	
Fever	1000	174.49 per 1000 (104.59 to 280.25)	OR 0.76 (0.42 to 1.40)	720 (9)	Low	Reasons for upgrading: none Reasons for downgrading: -risk of bias -publication bias

The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval; OR: Odds Ratio

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

PUBLICATION BIAS

Table 2.Results of Funnel Plot Symmetry tests. Missing studies imputed to asymmetric plots and the adjusted Odds ratio according to the Trim-and-fill method are presented.

Comparison	Imputed data points, "Trim and Fill"	Adjusted Odds Ratio (95% CI), "Trim and Fill"	Egger's test, significance	Begg's test, significance
RIRS vs. PCNL, endpoint: fever	none	Same as nonadjusted	P=0.30	P=0.36
RIRS vs. PCNL, endpoint: sepsis	none	Same as nonadjusted	P=0.85	P=0.49
mini PCNL vs. standard PCNL	none	Same as nonadjusted	P=0.46	P=0.80
tubeless PCNL vs. standard PCNL	none	Same as nonadjusted	P=0.33	P=0.19
PCNL/RIRS with suctioning sheath vs. standard PCNL	none	Same as nonadjusted	P=0.80	P=0.60
perioperative prophylaxis vs. perioperative prophylaxis plus short antibiotic prophylaxis	2	0.62 (0.31 to 1.26)	P=0.011	P=0.004