Infectious complications of endourological treatment of kidney stones: A meta-analysis Rawa Bapir ^{1, 13}, Kamran Hassan Bhatti ^{2, 13}, Ahmed Eliwa ^{3, 13}, Herney Andrés García-Perdomo ^{4, 13}, Nazim Gherabi ^{5, 13}, Derek Hennessey ^{6, 13}, Panagiotis Mourmouris ^{7, 13}, Adama Ouattara ^{8, 13}, Gianpaolo Perletti ^{9, 10, 13}, Joseph Philipraj ^{11, 13}, Alberto Trinchieri ^{12, 13}, Noor Buchholz ¹³ ⁸ Division of Urology, Souro Sanou University Teaching Hospital, Bobo-Dioulasso, Burkina Faso; ¹⁰ Faculty of Medicine and Medical Sciences, Ghent University, Belgium; ¹² Urology School, University of Milan, Milan, Italy; #### LIST OF SELECTED PAPERS AND PICO TABLES #### RIRS vs PCNL - 1. Agrawal MS, Mishra D. Minimally-invasive percutaneous nephrolithotomy versus retrograde intrarenal surgery for treatment of medium sized (10-20 mm) renal calculi-a prospective study Journal of Endourology. 2016; 30(Suppl2):A204-A205. - 2. Fayad AS, Elsheikh MG, Ghoneima W. Tubeless mini-percutaneous nephrolithotomy versus retrograde intrarenal surgery for lower calyceal stones of ≤ 2 cm: A prospective randomised controlled study. Arab Journal of Urology. 2017; 15:36-41. - 3.~Gu~XJ,~Lu~JL,~Xu~Y.~Treatment~of~large~impacted~proximal~ureteral~stones:~randomized~comparison~of~minimally~invasive~percutaneous~antegrade~ureterolithotripsy~versus~retrograde~ureterolithotripsy.~World~J~Urol.~2013;~31:1605-1610. - 4. Jain M, Manohar C, Nagabhushan M, Keshavamurthy R. A comparative study of minimally invasive percutaneous nephrolithotomy and retrograde intrarenal surgery for solitary renal stone of 1-2 cm Urology Annals. 2021; 13:226-231. - 5. Jiang K, Chen H, Yu X, Chen Z, et al. The "all-seeing needle" micro-PCNL versus flexible ureterorenoscopy for lower calyceal stones of \leq 2 cm. Urolithiasis. 2019; 47:201-206. - 6. Jin L, Yang B, Zhou Z, Li N. Comparative Efficacy on Flexible Ureteroscopy Lithotripsy and Miniaturized Percutaneous Nephrolithotomy for the Treatment of Medium-Sized Lower-Pole Renal Calculi. J Endourol. 2019; 33:914-919. - 7. Kumar A, Kumar N, Vasudeva P, et al. A prospective, randomized comparison of shock wave lithotripsy, retrograde intrarenal surgery and miniperc for treatment of 1 to 2 cm radiolucent lower calyceal renal calculi: a single center experience. J Urol. 2015; 193:160-164. - 8. Lee JW, Park J, Lee SB, et al. Mini-percutaneous Nephrolithotomy vs Retrograde Intrarenal Surgery for Renal Stones Larger Than 10 mm: A Prospective Randomized Controlled Trial. Urology 2015; 86:873-877. - 9. Li JW, Wang F, Cai FZ, Gao HZ. [Staged retrograde flexible ureteroscopic lithotripsy versus miniaturized percutaneous nephrolithotomy for renal stones of 2-4 cm in diameter: a randomized controlled trial]. Nan Fang Yi Ke Da Xue Xue Bao. 2016; 36:1672-1676. Chinese. - 10. Mhaske S, Singh M, Mulay A, et al. Miniaturized percutaneous nephrolithotomy versus retrograde intrarenal surgery in the treatment of renal stones with a diameter &-lt;15 mm: A 3-year open-label prospective study. Urology Annals. 2018; 10:165-169. - 11. Oo SM. Outcomes of minipercutaneous nephrolithotomy versus retrograde intrarenal surgery in lower pole renal stone. International Journal of Urology. 2020; 27(Suppl1):40. - 12. Sabnis RB, Ganesamoni R, Doshi A, et al. Micropercutaneous nephrolithotomy (microperc) vs retrograde intrarenal surgery for the management of small renal calculi: a randomized controlled trial. BJU Int. 2013; 112:355-61. ¹ Smart Health Tower, Sulaymaniyah, Kurdistan region, Iraq; ² Urology Department, HMC, Hamad Medical Corporation, Oatar; ³ Department of Urology, Zagazig University, Zagazig, Sharkia, Egypt; ⁴ Universidad del Valle, Cali, Colombia; ⁵ Faculty of Medicine Algiers 1, Algiers, Algeria; ⁶ Department of Urology, Mercy University Hospital, Cork, Ireland; ⁷ 2nd Department of Urology, National and Kapodistrian University of Athens, Sismanoglio Hospital, Athens, Greece; ⁹ Department of Biotechnology and Life Sciences, Section of Medical and Surgical Sciences, University of Insubria, Varese, Italy; ¹¹ Department of Urology, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth, Puducherry, India; ¹³ U-merge Ltd. (Urology for emerging countries), London-Athens-Dubai *. ^{*} U-merge Ltd. (Urology for Emerging Countries) is an academic urological platform dedicated to facilitate knowledge transfer in urology on all levels from developed to emerging countries. U-merge Ltd. is registered with the Companies House in London/ UK. www.U-merge.com - 13. Wen J, Xu G, Du C, Wang B. Minimally invasive percutaneous nephrolithotomy versus endoscopic combined intrarenal surgery with flexible ureteroscope for partial staghorn calculi: A randomised controlled trial. International Journal of Surgery. 2016; 28:22-27. - 14. Zeng G, Zhang T, Agrawal M, et al. Super-mini percutaneous nephrolithotomy (SMP) vs retrograde intrarenal surgery for the treatment of 1-2 cm lower-pole renal calculi: an international multicentre randomised controlled trial. BJU International. 2018; 122:1034-1040. - 15. Zhang H, Hong TY, Li G, et al. Comparison of the Efficacy of Ultra-Mini PCNL, Flexible Ureteroscopy, and Shock Wave Lithotripsy on the Treatment of 1-2 cm Lower Pole Renal Calculi. Urol Int. 2019; 102:153-159. | Author, year | Population | Intervention | Comparison | Fever | SIRS | Sepsis | |-----------------|--|---|--|------------------------------|------|----------------------| | Agrawal
2016 | 48 patients
renal calculi
of 10-20 mm
size | retrograde Intrarenal
Surgery (RIRS)
N=24 | minimally-invasive
PCNL
N=24 | 2/24
vs
2/24 | | | | Fayad 2016 | 120 patients
lower
calyceal
stones of
less than
2 cm | retrograde intrarenal
surgery (RIRS)
N=60 | mini-percutaneous
nephrolithotomy
(mini-PCNL)
N=60 | 3/60
vs
2/60 | | | | Gu 2013 | 59 patients
with
impacted
proximal
ureteral
stones
1.5 cm | retrograde
ureterolithotripsy
(RIRS)
N=29 | minimally invasive
percutaneous
antegrade
ureterolithotripsy
mini-PCNL
N=30 | 17/29
vs
5/30 | | | | Jain 2021 | 80 patients
renal stones
1-2 cm | RIRS
4-40 | mini-PCNL
N=40 | | | 7/40
vs
0/40 | | Jiang 2019 | 116 patients
with lower
calyceal
stones
≤ 2 cm | flexible
ureterorenoscopy
(FURS)
N=58 | micro percutaneous
nephrolithotomy
(micro-PCNL)
N=58 | 2/58
vs
1/58 | | | | Jin 2019 | 220 patients
with lower-
pole renal
calculi
(1-2 cm) | flexible ureteroscopy
lithotripsy
(FURL)
N=110 | miniaturized
percutaneous
nephrolithotomy
(m-PCNL)
N=110 | 4/110
vs
6/110 | | 0/110
vs
1/110 | | Kumar 2014 | 126 patients
with a single
1-2 cm
radiolucent
lower
calyceal
renal stone | retrograde intrarenal
surgery
N=43
shock wave
lithotripsy
N=42
(not included) | Miniperc
N=41 | 2/43*
vs
2/41*
UTI* | | | | Lee 2015 | 70 patients
with renal
stones
> 10 mm | retrograde intrarenal
surgery (RIRS)
N=35 | miniaturized
percutaneous
nephrolithotomy
(mini-PCNL)
N=35 | 2/35
vs
2/35 | | | | Li 2016 | 70 patients
with renal
stones
of 2-4 cm
in diameter | FURS
N=35 | PCNL
N=35 | 1/35
vs
2/35 | | | | Mhaske
2017 | 80 patients
renal stones
with a
diameter
< 15 mm | retrograde intrarenal
surgery (RIRS)
N=40 | miniaturized percutaneous nephrolithotomy (mini-perc) N= 40 | 4/40
vs
2/40 | | |----------------|---|--|--|---------------------|--------------------| | 00 2020 | patients 60
1- 2 cm
sized lower
pole stone | retrograde intrarenal
surgery
N=30 | minipercutaneous
nephrolithotomy
N=30 | | 5/30
vs
3/30 | | Sabnis 2013 | 70 patients
renal calculi
< 1.5 cm | retrograde intrarenal
surgery (RIRS)
N=35 | micropercutaneous
nephrolithotomy
(microperc)
N=35 | 4/35
vs
3/35 | | | Wen 2016 | 67 patients
with partial
staghorn
calculi | endoscopic
combined intra-
Renal surgery
(ECIRS)
N=33 | minimally invasive
percutaneous
nephrolithotomy
(MPCNL)
N=34 | 10/34
vs
8/34 | 2/34
vs
3/34 | | Zeng 2018 | 160 patients
1-2 cm
lower- pole
renal calculi | retrograde
intrarenal surgery
(RIRS)
N=80 | super-mini
percutaneous
nephrolithotomy
(SMP)
N=80 | 6/80
vs
4/80 | | | Zhang
2019 | 180 patients
with single
radio-opaque
lower caliceal
calculi of
1-2 cm | flexible ureteroscopy
FURS
N=60
shock wave
lithotripsy
(SWL
N=60
(not included) | ultra-mini PCNL
(UMP)
N=60 | 3/60
vs
2/60 | | #### MINI vs PCNL - 1. Agrawal M, Mishra D. Minimally-invasive percutaneous nephrolithotomy versus conventional percutaneous nephrolithotomy for treatment of large sized (20-30 mm) renal calculi-a prospective study. J Endourol. 2018; 32(Suppl2):A59-A60. - 2. Bozzini G, Aydogan TB, Müller A, et al. A comparison among PCNL, Miniperc and Ultraminiperc for lower calyceal stones between 1 and 2 cm: A prospective, comparative, multicenter and randomised study. BMC Urology. 2020; 20:1. - 3. Cheng F, Yu W, Zhang X, et al. Minimally invasive tract in percutaneous nephrolithotomy for renal stones. J Endourol. 2010; 24:1579-82. - 4. Guddeti RS, Hegde P, Chawla A, et al. Super-mini percutaneous nephrolithotomy (PCNL) vs standard PCNL for the management of renal calculi of < 2 cm: a randomised controlled study. BJU Int. 2020; 126:273-279. - 5. Güler A, Erbin A, Ucpinar B, et al. Comparison of miniaturized percutaneous nephrolithotomy and standard percutaneous nephrolithotomy for the treatment of large kidney stones: a randomized prospective study. Urolithiasis. 2019; 47:289-295. - 6. Sakr A, Salem E, Kamel M, et al. Minimally invasive percutaneous nephrolithotomy vs standard PCNL for management of renal stones in the flank-free modified supine position: single-center experience. Urolithiasis. 2017; 45:585-589. - 7. Tepeler A, Akman T, Silay MS, et al. Comparison of intrarenal pelvic pressure during micro-percutaneous nephrolithotomy and conventional percutaneous nephrolithotomy. Urolithiasis. 2014; 42:275-279. - 8. Zeng G, Cai C, Duan X, et al. Mini Percutaneous Nephrolithotomy Is a Noninferior Modality to Standard Percutaneous Nephrolithotomy for the Management of 20-40 mm Renal Calculi: A Multicenter Randomized Controlled Trial. Eur Urol. 2021; 79:114-121. - 9. Sabnis R, Ganpule A, Desai M. Is there any rationale of preferring ultraminiperc (MIP S) over miniperc(MIP M)?Prospective randomized study. J Endourol. 2016; 30(Suppl2):A376-A377. | Author, year | Population | Intervention | Comparison | Fever | SIRS | Sepsis | |-----------------|--|--|---|-----------------------------------|----------------------|--------| | Agrawal
2018 | renal calculi
of 20-30 mm | MIP-M
nephroscope | conventional
nephroscope | 2/20
vs | | | | 2010 | 0.2000 | 12 F
N=20 | 20.8 F
N=20 | 2/20 | | | | Bozzini 2020 | lower calyceal
stones
1-2 cm | MP 20 F
UMP 6 F
N=47 | PCNL
24 F
N=44 | 2/47*
1/41*
vs | | | | | | N=41 | | 4/44*
UTI* | | | | Cheng 2010 | | mini
8-9.8F
N=69
(72 renal units) | standard
20.8F
N=111 (115
renal units) | 15/72
vs
27/115 | | | | Guddeti
2020 | renal calculi
of < 2 cm | mini
12F
N=75 | standard
20.8F
N=75 | 1/75
vs
5/75
Fever > 38° | | | | Guler 2018 | renal stones
≥ 2 cm | mini
12F
N=51 | standard
26F
N=46 | 1/51
vs
0/46 | | | | Sakr 2017 | Renal stones
2-3 cm | mPCNL
N=75
87 renal units | sPCNL
N=75
81 renal units | 8/87
vs
5/81 | | | | Tepeler 2014 | 1- 3-cm renal
calculi resistant
to shock wave
lithotripsy | mPCNL
N=10 | conventional
PCNL
N=10 | 1/10
vs
0/10 | | | | Zeng 2021 | 20-40 mm
renal calculi | miniPCNL | standard-PCNL | 97/992
vs
81/988 | 8/992
vs
6/988 | | #### Paper considered for qualitative analysis | | Sabnis 2016 | stone size | ultraminiPCNL | miniPCNL | SIRS | | |-----|-------------|------------|---------------|----------|------|--| | - 1 | | < 1.5 cm | 7.5F | 12F | 1/30 | | | | | | N-30 | N-30 | 0/30 | | #### Tubeless vs non tubeless #### List of papers - 1. Agrawal MS, Agrawal M, Gupta A, et al. A randomized comparison of tubeless and standard percutaneous nephrolithotomy. J Endourol. 2008; 22:439-442. - 2. Bhat S, Lal J, Paul F. A randomized controlled study comparing the standard, tubeless, and totally tubeless percutaneous nephrolithotomy procedures for renal stones from a tertiary care hospital Indian J Urol. 2017; 33:310-314. - 3. Istanbulluoglu MO, Ozturk B, Gonen M, et al. Effectiveness of totally tubeless percutaneous nephrolithotomy in selected patients: A prospective randomized study. International Urol Nephrol. 2009; 41:541-545. - 4. Lu Y, Ping J-G, Zhao X-J, et al. Randomized prospective trial of tubeless versus conventional minimally invasive percutaneous nephrolithotomy. World J Urol. 2013; 31:1303-1307. - 5. Mishra S, Sabnis RB, Kurien A, et al. Questioning the wisdom of tubeless percutaneous nephrolithotomy (PCNL): a prospective randomized controlled study of early tube removal vs tubeless PCNL. BJU Int. 2010; 106:1045-8. - 6. Moosanejad N, Firouzian A, Hashemi SA, et al. Comparison of totally tubeless percutaneous nephrolithotomy for kidney stones: A randomized, clinical trial. Braz J Med Biol Res. 2016; 49:e4878. | Author, year | Population | Intervention | Comparison | Fever | SIRS | Sepsis | |------------------------|---|-----------------------|--|----------------------|------|--------| | Agrawal 2008 | tubeless or
nephrostomy-free
(PCNL) | standard
N=101 | tubeless
N=101 | 5/101
vs
4/101 | | | | Bhat 2017 | patients who
underwent PCNL | standard
N=25 | tubeless/
completely
tubeless
N=25+25 | 2/25
vs
3/50 | | | | Moosanejad
2016 | patients who
underwent PCNL | standard
N=40 | tubeless
N=44 | 3/40
vs
2/44 | | | | Lu 2013 | patients who
underwent PCNL
< 4 cm | standard
N=16 | tubeless
N=16 | 2/16
vs
3/16 | | | | Istanbulluoglu
2009 | patients who
underwent PCNL | standard
N=16 | tubeless
N=16 | 1/45
vs
0/45 | | | | Mishra 2010 | simple
stone of < 3 cm,
no significant
bleeding,
no perforation,
single-tract access | early removal
N=11 | tubeless
N=11 | 2/11
vs
1/11 | | | #### Tubeless vs tubeless with sealant/infiltration with bupivacaine - 1. Shah HN, Hegde S, Shah JN, et al. A Prospective, Randomized Trial Evaluating the Safety and Efficacy of Fibrin Sealant in Tubeless Percutaneous Nephrolithotomy. J Urol. 2006; 176:2488-2493. - 2. Titaram S, Nualyong C, Taweemonkongsap T, et al. The impact of gelatin-sealant in the access tract after tubeless percutaneous nephrolithotomy: A randomized controlled trial. J Med Ass Thai. 2017; 100(Suppl2):S132-S137. - 3. Mankongsrisuk T, Nualyong C, Tantiwong A, et al. Efficacy of nephrostomy tract infiltration with bupivacaine before and after tubeless percutaneous nephrolithotomy: A randomized control study. J Med Ass Thai. 2017; 100(Suppl2):S138-S143. | Author, year | Population | Intervention | Comparison | Fever | SIRS | Sepsis | |-----------------------|-----------------------------------|---|------------------|----------------------|--------------------|--------------------| | Shah 2006 | patients who
underwent
PCNL | tubeless
with sealant
N=32 | tubeless
N=31 | 1/32
vs
2/31 | | | | Titaram 2017 | patients who
underwent
PCNL | tubeless
with sealant
N=41 | tubeless
N=41 | 19/41
vs
15/41 | 1/41
vs
6/46 | 1/41
vs
0/41 | | Mankongsrisuk
2017 | patients who
underwent
PCNL | infiltration
with
bupivacaine
N=46 | standard
N=23 | 7/46
vs
6/23 | | | #### Suctioning sheath - 1. Huang J, Song L, Xie D, et al. A Randomized Study of Minimally Invasive Percutaneous Nephrolithotomy (MPCNL) with the aid of a patented suctioning sheath in the treatment of renal calculus complicated by pyonephrosis by one surgery BMC Urology. 2016; 16:1 Article Number 71. - 2. Lai D, Xu W, Chen M, et al. Minimally Invasive Percutaneous Nephrolithotomy with a Novel Vacuum-assisted Access Sheath for obstructive calculous pyonephrosis: A Randomized Study. Urol J. 2020; 17:474-479. - 3. Zhong W, Wen J, Peng L, Zeng G. Enhanced super-mini-PCNL (eSMP): low renal pelvic pressure and high stone removal efficiency in a prospective randomized controlled trial. World J Urol. 2021; 39:929-934. - 4. Eisner B, Agrawal S, Desai M, et al. Initial human experience with a novel stone aspiration device used during ureteroscopic lithotripsy for renal stones. J Urol. 2020; 203(Suppl4):e211. | Author,year | Population | Intervention | Comparison | Fever | SIRS | Sepsis | |-------------|--|--|--|---|------|--------| | Huang 2016 | minimally invasive
percutaneous
nephrolithotomy
(MPCNL)
for calculus
pyonephrosis | suctioning
sheath
N=91 | traditional
N=91 | 10/91
vs
25/91
Fever ≥ 38.5 °C | | | | Lai 2020 | obstructive
calculous
pyonephrosis | 20 F
Vacuum-assisted
Access Sheath
N=38 | Amplatz sheath
N=38 | 5/38
vs
8/38
Fever ≥ 38.5 °C | | | | Zhong 2021 | 2-5 cm
renal calculus | enhanced-SMP
(eSMP)
N=46 | conventional
mini-PCNL
(mPCNL)
N=47 | 2/46
vs
6/47 | | | | Eisner 2020 | URS
Renal stones
5-15 mm | aspiration device
N=10 | basket
retrieving
N=10 | 0/10*
vs
1/10*
UTI* | | | ## Comparison of perioperative prophylaxis with/without short oral antibiotic course in patients with higher risk of infectious complications 1. Sur RL, Krambeck AE, Large T, et al. A Randomized Controlled Trial of Preoperative Prophylactic Antibiotics for Percutaneous Nephrolithotomy in Moderate to High Infectious Risk Population: A Report from the EDGE Consortium. J Urol. 2021; 205:1379-1386. | Author, year | Population | Intervention | Comparison | Fever | SIRS | Sepsis | |--------------|--|--------------|---------------------------|-------|------|--------| | HIGH RISK | | | 1 7 5 57 1 | | | | | Sur 2021 | stones requiring
PCNL with | 2 days | 7 days of
preoperative | 3/55 | | 14/55 | | | positive
preoperative
urine culture
or existing
indwelling
urinary drainage
tube | N=55 | antibiotics
N=68 | 4/68 | | 10/68 | #### Comparison of perioperative prophylaxis with/without short oral antibiotic course - 1. Bag S, Kumar S, Taneja N, et al. One week of nitrofurantoin before percutaneous nephrolithotomy significantly reduces upper tract infection and urosepsis: A prospective controlled study. Urology. 2011; 77:45-49. - 2. Chew BH, Miller NL, Abbott JE, et al. A Randomized Controlled Trial of Preoperative Prophylactic Antibiotics Prior to Percutaneous Nephrolithotomy in a Low Infectious Risk Population: A Report from the EDGE Consortium. J Urol. 2018; 200:801-808. - 3. Demirtas A, Yildirim YE, Sofikerim M, et al. Comparison of infection and urosepsis rates of ciprofloxacin and ceftriaxone prophylaxis before percutaneous nephrolithotomy: a prospective and randomised study. Scientific World Journal. 2012; 2012:916381. - 4. Dogan HS, Sahin A, Cetinkaya Y, et al. Antibiotic prophylaxis in percutaneous nephrolithotomy: prospective study in 81 patients. J Endourol. 2002; 16:649-653. - 5. Mariappan P, Smith G, Moussa SA, Tolley DA. One week of ciprofloxacin before percutaneous nephrolithotomy significantly reduces upper tract infection and urosepsis: a prospective controlled study. BJU Int. 2006; 98:1075-9. - 6. Seyrek M, Binbay M, Yuruk E, et al. Perioperative prophylaxis for percutaneous nephrolithotomy: randomized study concerning the drug and dosage. J Endourol. 2012; 26:1431-6. - 7. Tuzel E, Aktepe OC, Akdogan B. Prospective comparative study of two protocols of antibiotic prophylaxis in percutaneous nephrolithotomy. J Endourol. 2013; 27:172-6. | Author, year | Population | Intervention | Comparison | Fever | SIRS | Sepsis | |-------------------|---|---|--|--------------------|--------------------------------------|-------------------------------------| | Bag 2011 | patients who
underwent PCNL
with stones
2.5 cm and/or
hydronephrosis
and sterile urine | standard
perioperative
antibiotic
prophylaxis
N=53 | perioperative
antibiotic prophylaxis
plus sustained-
released nitrofurantoin
100 mg b.i.d.
for 7 days
preoperatively
N=48 | | 26/53
vs
9/48 | | | Chew 2018 | patient who
underwent PCNL
with negative
preoperative
urine culture and
no urinary drain | perioperative
ampicillin
and gentamicin
N=43 | perioperative
ampicillin and
gentamicin
plus nitrofurantoin
100 mg twice daily for
7 days preoperatively
N=43 | | | 5/43
vs
6/43 | | Demirtas
2012 | patients who
underwent PCNL
with negative
culture | Ciprofloxacin
single dose
or single dose
plus additional
dose at
12 hours
N=15+15 | Ciprofloxacin
Until
nephrostomy tube was
extracted
N=15 | | 1/15
2/15
(3/30)
vs
4/15 | | | | patients who
underwent PCNL
with negative
culture | Ceftriaxone
single dose
or single dose
plus additional
dose at 12
hours
N=15+15 | Ceftriaxone
until nephrostomy
tube was extracted
N=15 | | 2/15
0/15
(2/30)
vs
2/15 | | | Dogan 2002 | PCNL
with sterile urine
preoperatively | single
intravenous
ofloxacin
(200 mg)
N=43 | Ofloxacin
(400 mg)
until the nephrostomy
catheter was removed
N=38 | 9/43
vs
8/38 | | 1/43*
vs
1/38*
Bacteremia* | | Mariappan
2006 | patients who
underwent PCNL
of larger stones
or > 20 mm
dilated calyceal
system with
sterile midstream
urine culture
before surgery | Gentamicin 5
mg/kg single
dose
N=46 | Gentamicin 5 mg/kg
single dose
+ ciprofloxacin 250
mg BID
for 7 days
N=52 | | 18/46
vs
7/52 | | | Seyrek 2012 | patients who
underwent PCNL | Sulbactam/am picillin single dose prophylaxis or single dose prophylaxis plus additional dose at 12 hours N=31+33 | antibiotic
until the nephrostomy
tube removal
N=31 | | 4/31
5/33
(9/64)
vs
4/31 | | | | patients who
underwent PCNL | Cefuroxime
single dose
prophylaxis
or single dose
prophylaxis
plus additional
dose at
12 hours
N=32+32 | antibiotic
until the nephrostomy
tube removal
N=32 | | 5/32
8/32
(13/64)
4/32 | | |------------|--|--|---|------------------------------------|---------------------------------|---| | Tuzel 2013 | patients who
underwent PCNL
with preoperative
sterile urine | single-dose
of ceftriaxone
N=36 | single-dose of ceftriaxone plus oral 3rd generation cephalosporin until nephrostomy withdrawal N=37 | 4/36
6/37
Fever of
> 38°C | | 0 | #### Antibiotic prophylaxis for PCNL (comparison of antibiotics) - 1. Song F, Liu C, Zhang J, et al. Antibacterial effect of Fosfomycin tromethamine on the bacteria inside urinary infection stones. Int Urol Nephrol. 2020; 52:645-654. - 2. Taken K, Asik A, Eryilmaz R, et al. Comparison of ceftriaxone and cefazolin sodium antibiotic prophylaxis in terms of SIRS/urosepsis rates in patients undergoing percutaneous nephrolithotomy, Journal of Urological Surgery 2019; 6:2(111-117). Plus, two studies included in the previous section (Demirtas 2012, Seyrek 2012) | Author, year | Population | Intervention | Comparison | Fever | SIRS | Sepsis | |------------------|--|---|---------------------------------|--------------------|----------------------|---| | Demirtas
2012 | patients who
underwent
PCNL with
negative culture | ciprofloxacin
N=45 | ceftriaxone
N=45 | | 7/45
vs
4/45 | 3/45
vs
0/45 | | Seyrek 2012 | patients who
underwent
PCNL | sulbactam-
ampicillin
N=95 | cefuroxime
N=96 | | 13/95
vs
17/96 | 1/95
vs
1/96
Death
1/95
vs
0/96 | | Song 2020 | patients who
underwent
PCNL with
pre-operative
negative urine
culture | single dose
fosfomycin oral
3 g
N = 30 | cefuroxime
IV 3 gr
N = 31 | 7/30
vs
9/31 | | 3/30
vs
10/31
SOFA=>2 | | Taken 2019 | patients who
underwent
PCNL | ceftriaxone
N=30
cefazoline
sodium | cefazoline
sodium
N=32 | | 7/30
4/32 | 2/30 2/32 | #### Antibiotic prophylaxis for PCNL (vs placebo) 1. Fourcade RO. Antibiotic prophylaxis with cefotaxime in endoscopic extraction of upper urinary tract stones: a randomized study. The Cefotaxime Cooperative Group. J Antimicrob Chemother. 1990; 26(supplA):77-83. | Author,year | Population | Intervention | Comparison | Fever | SIRS | Sepsis | |------------------|----------------------------|------------------------|-----------------|----------------|------|--------| | Fourcade
1990 | patients who
underwent | cefotaxime 1 g
N=27 | placebo
N=22 | 3/27*
7/22* | | | | | PCNL with
Sterile urine | | | Bacteriuria* | | | Antibiotic prophylaxis for RIRS (vs placebo) 1. Zhao Z, Fan J, Sun H, et al. Recommended antibiotic prophylaxis regimen in retrograde intrarenal surgery: evidence from a randomised controlled trial. BJU Int. 2019; 124:496-503. | Author,year | Population | Intervention | Comparison | Fever | SIRS | Sepsis | |-------------|--|--|------------------|-------|--------------------------------------|--------| | Zhao 2019 | RIRS in
patients
with renal
stones with
preoperative | ciprofloxacin
200 mg i.v.
at 30 min
before RIRS
N=142 | placebo
N=142 | | 7/142
vs
6/142
vs
14/142 | | | | sterile urine | ciprofloxacin
200 mg i.v.
at 30 min before
RIRS and after
6 hours
N=142 | | | SIRS | | #### RISK OF BIAS #### RIRS vs PCNL | Studies | D1 | D2 | D3 | D4 | D5 | Overall | | | | |---|---------------------------------|---------|----|--------|----|---------|--------|---|---------------| | Agrawal 2016 | | | | | | | | | Low Risk | | Fayad 2016 | | | | | | | | • | Some concerns | | Gu 2013 | | | | | | | | | High risk | | Jain 2021 | | | | | | | | | | | Jiang 2019 | | | | | | | | | | | Jin 2019 | | | | | | | | | | | Kumar 2014 | | | | | | | | | | | Lee 2015 | | | | | | | | | | | Li 2016 | | | | | | | | | | | Mhaske 2017 | | | | | | | | | | | OO 2020 | | | | | | | | | | | Sabnis 2013 | | | | | | | | | | | Wen 2016 | | | | | | | | | | | Zeng 2018 | | | | | | | | | | | Zhang 2019 | | | | | | | | | | | D1: Randomisation
D2: Deviations from
D3: Missing outcom
D4: Measurement o
D5: Selection of the | the inte
e data.
f the ou | nded in | | tions. | | | Ŋ
Į | | | #### Mini vs standard PCNL ### Tubeless vs standard - tubeless vs tubeless with sealant/bupivacaine infiltration | Studies | D1 | D2 | D3 | D4 | D5 | Overall | | | |--|------------|----|----------|-------|----|---------|---|---------------| | Agrawal 2008 | | | | | | | | Low Risk | | Bhat 2017 | | | | | | | • | Some concerns | | Moosanejad
2016 | | | | | | | | High risk | | Lu 2013 | | | | | | | | | | Istanbulluoglu
2009 | | | | | | | | | | Mishra 2010 | | | | | | | | | | Shah 2006 | | | | | | | | | | Titaram 2017 | | | | | | | | | | Mankongsrisuk
2017 | | | | | | | | | | D1: Randomisation
D2: Deviations from
D3: Missing outcom | n the inte | | ntervent | ions. | | | | | | D4: Measurement | of the out | | | | | | | | #### Suctioning sheath | Studies | D1 | D2 | D3 | D4 | D5 | Overall | | | |-------------|----|----|----|----|----|---------|---|---------------| | Huang 2016 | | | | | | | | Low Risk | | Lai 2020 | | | | | | | • | Some concerns | | Zhong 2021 | | | | | | | | High risk | | Eisner 2020 | | | | | | | | | - D1: Randomisation process. D2: Deviations from the intended interventions. D3: Missing outcome data. D4: Measurement of the outcome. D5: Selection of the reported result D5: Selection of the reported result #### Antibiotic prophylaxis | Studies | D1 | D2 | D3 | D4 | D5 | Overall | | | |----------------|----|----|----|----|----|---------|---|---------------| | Sur 2021 | | | | | | | | Low Risk | | Bag 2011 | | | | | | | • | Some concerns | | Chew 2018 | | | | | | | | High risk | | Tuzel 2013 | | | | | | | | | | Seyrek 2012 | | | | | | | | | | Mariappan 2006 | | | | | | | | | | Dogan 2002 | | | | | | | | | | Demirtas 2012 | | | | | | | | | | Song 2020 | | | | | | | | | | Taken 2019 | | | | | | | | | | Fourcade 1990 | | | | | | | | | | Zhao 2019 | | | | | | | | | - D3: Missing outcome data. - D4: Measurement of the outcome. - D5: Selection of the reported result #### **SUMMARY OF FINDINGS** #### Table 1a. Post-operative complications of retrograde intrarenal surgery (RIRS) vs. percutaneous nephrolithotomy (PCNL). Post-operative Complications of retrograde intrarenal surgery (RIRS) vs. percutaneous nephrolithotomy (PCNL) Patient or population: male/female patients undergoing renal stone procedures Settings: inpatient Intervention: RIRS Comparison: PCNL | Outcomes | | comparative risks
5% CI) | effect | No of
Participants | Quality of the evidence | Comments | |----------|-------------------|---|-------------------------------|--------------------------|-------------------------|---| | | Assumed
risk | Corresponding
risk | (95% CI) | (studies or comparisons) | (GRADE) | | | | Comparison | Intervention | | | | | | Fever | 63.86 per
1000 | 95.07 per 1000 (63.26 to 140.18) | OR: 1.54
(0.99 to
2.39) | 1285 (13) | ⊕⊕⊕⊙
Moderate | Reasons for
upgrading:
none
Reasons for
downgrading:
-risk of bias | | Sepsis | 32.71 per
1000 | 48.88 per 1000 (12.35 to 173.32) | OR: 1.52
(0.37 to
6.20) | 428
(4) | ⊕⊕⊕⊙
Moderate | Reasons for
upgrading:
none
Reasons for
downgrading:
-risk of bias | The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI). CI: Confidence interval; OR: Odds Ratio GRADE Working Group grades of evidence High quality: Further research is very unlikely to change our confidence in the estimate of effect. Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate. Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate. Very low quality: We are very uncertain about the estimate. #### Table 1b. Post-operative complications of miniaturized percutaneous nephrolithotomy (mini-PCNL) vs. standard PCNL. Post-operative Complications of miniaturized percutaneous nephrolithotomy (mini-PCNL) vs. standard PCNL Patient or population: male/female patients undergoing renal stone procedures Settings: inpatient Intervention: mini-PCNL Comparison: standard PCNL | Outcomes | | comparative risks
5% CI) | effect | Participants | Quality of the evidence | Comments | |----------|--------------------|---|-------------------------------|--------------|-------------------------|---| | risk | Corresponding risk | (95% CI) | (studies or comparisons) | (GRADE) | 77 % | | | | Comparison | Intervention | | | | | | Fever | | 98.83 per 1000 (77.47 to 124.55) | OR: 1.11
(0.85 to
1.44) | 2774 (8) | Moderate | Reasons for
upgrading:
none
Reasons for
downgrading:
-risk of bias | The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI). CI: Confidence interval; OR: Odds Ratio GRADE Working Group grades of evidence High quality: Further research is very unlikely to change our confidence in the estimate of effect. Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate. **Low quality:** Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate. Very low quality: We are very uncertain about the estimate. #### Table 1c. Post-operative complications of tubeless percutaneous nephrolithotomy (PCNL) vs. standard percutaneous nephrolithotomy (PCNL). Post-operative Complications of tubeless percutaneous nephrolithotomy (PCNL) vs. standard percutaneous nephrolithotomy (PCNL) Patient or population: male/female patients undergoing renal stone procedures Settings: inpatient Intervention: tubeless PCNL Comparison: standard PCNL | Outcomes | | omparative risks
5% CI) | Relative
effect
(95% CI) | Participants | | Comments | |----------|--------------|--|--------------------------------|--------------------------|----------|---| | | Assumed risk | Corresponding
risk | | (studies or comparisons) | (GRADE) | | | | Comparison | Intervention | | | | | | Fever | | 48.02 per 1000 (22.35 to 98.80) | OR: 0.75
(0.34 to
1.63) | 505
(6) | Moderate | Reasons for
upgrading:
none
Reasons for
downgrading:
-risk of bias | The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI). CI: Confidence interval; OR: Odds Ratio GRADE Working Group grades of evidence High quality: Further research is very unlikely to change our confidence in the estimate of effect. Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate. Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate. Very low quality: We are very uncertain about the estimate. #### Table 1d. Post-operative percutaneous nephrolithotomy (PCNL) with suctioning sheath vs. standard PCNL. Post-operative percutaneous nephrolithotomy (PCNL) with suctioning sheath vs. standard PCNL Patient or population: male/female patients undergoing renal stone procedures Settings: inpatient Intervention: PCNL with suctioning sheath Comparison: standard PCNL | Outcomes | | comparative risks
5% CI) | effect | Participants | Quality of the evidence | Comments | | |----------|--------------------|---|------------------------------|--------------------------|-------------------------|---|--| | | Assumed risk | Corresponding
risk | (95% CI) | (studies or comparisons) | (GRADE) | | | | | Comparison | Intervention | | | | | | | Fever | 221.59 per
1000 | 95.29 per 1000 (53.86 to 166.15) | OR 0.37
(0.20 to
0.70) | 351
(3) | ⊕⊕⊙⊙
Low | Reasons for
upgrading:
none
Reasons for
downgrading:
-risk of bias
-imprecision | | The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI). CI: Confidence interval; OR: Odds Ratio GRADE Working Group grades of evidence High quality: Further research is very unlikely to change our confidence in the estimate of effect. Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate. Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate. Very low quality: We are very uncertain about the estimate. #### Table 1e. Post-operative complications of percutaneous nephrolithotomy (PCNL) with simple perioperative antibiotic prophylaxis (PAP) plus a short oral antibiotic course vs. PCNL with simple PAP. Post-operative Complications of percutaneous nephrolithotomy (PCNL) with simple perioperative antibiotic prophylaxis (PAP) plus a short oral antibiotic course vs. PCNL with simple PAP Patient or population: male/female patients undergoing renal stone procedures Settings: inpatient Intervention: PCNL with simple PAP plus a short oral antibiotic course Comparison: PCNL with simple PAP | Outcomes | | comparative risks
5% CI) | effect | No of
Participants
(studies or
comparisons) | Quality of the evidence | Comments | |----------|--------------|---|------------------------------|--|-------------------------|--| | | Assumed risk | Corresponding
risk | | | (GRADE) | | | | Comparison | Intervention | | | 1 | | | Fever | 1000 | 174.49 per 1000 (104.59 to 280.25) | OR 0.76
(0.42 to
1.40) | 720
(9) | Low | Reasons for
upgrading:
none
Reasons for
downgrading:
-risk of bias
-publication bias | The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI). CI: Confidence interval; OR: Odds Ratio GRADE Working Group grades of evidence High quality: Further research is very unlikely to change our confidence in the estimate of effect. Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate. Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate. Very low quality: We are very uncertain about the estimate. #### **PUBLICATION BIAS** **Table 2.**Results of Funnel Plot Symmetry tests. Missing studies imputed to asymmetric plots and the adjusted Odds ratio according to the Trim-and-fill method are presented. | Comparison | Imputed data points,
"Trim and Fill" | Adjusted Odds Ratio (95% CI), "Trim and Fill" | Egger's test, significance | Begg's test,
significance | |--|---|---|----------------------------|------------------------------| | RIRS vs. PCNL,
endpoint: fever | none | Same as nonadjusted | P=0.30 | P=0.36 | | RIRS vs. PCNL,
endpoint: sepsis | none | Same as nonadjusted | P=0.85 | P=0.49 | | mini PCNL
vs. standard PCNL | none | Same as nonadjusted | P=0.46 | P=0.80 | | tubeless PCNL
vs. standard PCNL | none | Same as nonadjusted | P=0.33 | P=0.19 | | PCNL/RIRS
with suctioning sheath
vs. standard PCNL | none | Same as nonadjusted | P=0.80 | P=0.60 | | perioperative prophylaxis
vs. perioperative
prophylaxis plus short
antibiotic prophylaxis | 2 | 0.62 (0.31 to 1.26) | P=0.011 | P=0.004 |