ORIGINAL PAPER

Psychological and sexological assessment of patients with chronic prostatitis

Konstantinos Stamatiou 1, Vittorio Magri 2, Margherita Trinchieri 3, Alberto Trinchieri 4, Gianpaolo Perletti 5 on behalf of Mediterranean study group for prostatitis and prostatic diseases

1 Department of Urology, Tzaneio Hospital, Piraeus, Greece;
2 Urology Unit, ASST Fatebenefratelli Sacco, Milan, Italy;
3 Psychiatry Unit, ASST Rhodense, G. Salvini Hospital, Garbagnate (Milan), Italy;
4 School of Urology, University of Milan, Milan, Italy;
5 Department of Biotechnology and Life Sciences, Section of Medical and Surgical Sciences, University of Insubria, Varese, Italy.

Summary
Purpose: Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is characterized by a multiformal clinical presentation requiring a differentiated treatment based on different phenotypes including the psychosocial and sexual domains. The aim of this study was assessing the complex correlations between somatic, psychological, and sexual symptoms of CP/CPPS patients.

Materials and methods: We performed a cross-sectional study on patients attending a Prostatitis Clinic. Patients were administered the following questionnaires: National Institutes of Health-Chronic Prostatitis Symptom Index (NIH-CPSI), International Prostate Symptom Score (IPSS), International Index of Erectile Function (IIEF), Premature Ejaculation Diagnostic Tool (PEDT), Patient Health Questionnaire-9 (PHQ-9), Generalized Anxiety Disorder 7-item (GAD-7), Oxford Happiness Questionnaire (OHQ), and Temperament Evaluation of Memphis, Pisa, Paris and San Diego Autoquestionnaire (TEMPS-A).

Results: Linear regression analyses show highly significant correlations between scores of the NIH-CPSI and the scores of the IPSS and PEDT. IPSS, PHQ-9, and OHQ psychometric questionnaires. IPSS scores correlate significantly with the psychometric scores only when a non-parametric analysis is performed. IIEF and PEDT sexual function scores did not correlate with any of the psychometric tests. NIH-CPSI scores correlate positively with most of the TEMPS-A profiles but the hyperthymic profile correlated negatively with the total and QoL NIH-CPSI and with PEDT scores.

Conclusions: Scores measuring anxiety, depression, and psychological well-being in patients with CP/CPPS are strictly correlated with prostatitis-like symptoms although they are poorly correlated with symptoms of prostatism, as measured by IPSS, and not correlated with scores of sexual dysfunctions, as measured by IIEF and PEDT. A hyperthymic temperament may temperament increase resilience against the disease.

KEY WORDS: Chronic prostatitis; chronic pelvic pain syndrome; Depression; Anxiety; Affective temperaments.

Submitted 3 March 2024; Accepted 7 March 2024

INTRODUCTION

Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a common clinical condition presenting with a variety of signs and symptoms including chronic pain, voiding symptoms, sexual and psychosocial disturbances (1). The importance of recognizing the psychological impact of CP/CPPS has been taken into primary consideration by the UPOINT phenotyping and therapeutic algorithm (2), which rates a specific “Psychosocial” domain in the frame of the work-up of chronic prostatitis (CP) patients. It is suggested to use self-administered questionnaires to assess depression and anxiety and to measure negative thoughts associated with pain.

The implementation of the UPOINT system with the evaluation of a sexual domain (“S”) has further extended the evaluation of patients with CP/CPPS who frequently present with significant rates of erectile and orgasmic dysfunction (3). The aim of this study was an in-depth assessment of the complex correlations between somatic, psychological, and sexual disorders in CP/CPPS patients.

METHODS

Study design and endpoints

We performed a cross-sectional study on a cohort of patients with CP-CPPS, consecutively enrolled among patients attending two outpatient clinics. The study was ethically approved by the local Ethics Committee of Tzaneio Hospital (protocol 8295/03-05-2022) and complied with the requirements of the Helsinki declaration.

The primary endpoint of the study was the association between the total and subdomain scores (pain, voiding symptoms, quality of life) of the National Institute of Health-Chronic Prostatitis Symptom Index (NIH-CPSI) (4), and the total score of the Patient Health Questionnaire-9 (PHQ-9), a self-administered tool focusing on the presence and severity of depression (5).

Secondary endpoints of the study included the assessment of an association between the scores (i) of the NIH-CPSI questionnaire, (ii) of the International Prostate Symptom Score (IPSS) (6), (iii) of the erectile function domain of the International Index of Erectile Function (IIEF) (7), and (iv) of the Premature Ejaculation Diagnostic Tool (PEDT) (8) (independent variables), and the scores of the following psychosocial tests: (i) the PHQ-9 questionnaire (5), (ii) the
parametric (Pearson’s product-moment ‘rho’) correlation coefficients were calculated, to take into account the existence of non-linear relationships between the bivariates.

Sample size calculation
To estimate the effect size for sample size calculation, we referred to the Koh et al. (13) trial, reporting a significant correlation between the NIH-CPSI and PHQ-9 scores ($p = 0.009$), resulting in a Spearman’s coefficient ($\rho$) equal to 0.307. Sample size calculations was performed using the G*Power 3.1.3 software (14). We computed that a sample of 127 patients was required to analyze by simple linear regression (one predictor) the primary endpoint of the study, namely, the correlation between the NIH-CPSI total score and the PHQ-9 depression score, with 95% power, a 5% alpha error probability, a $\beta^2$ effect size of 0.104 and a $\beta^2$ coefficient equal to 0.0942.

Logistic regression analysis
Simple binary logistic regression analysis was performed to ascertain the goodness of fit of models whereby the increasing symptom scores of tests (e.g., the NIH-CPSI) showing significant linear correlation with psychometric scores, would be significant predictor of dichotomized psychometric outcomes (e.g., no depression vs. moderate-to-severe depression).

The null hypothesis for the logistic regression was the absence of an association between the symptom score predictor and the psychologic condition dichotomic outcome. The coefficients of the logistic functions, the intercepts, the odds ratios, and the confidence intervals related to the odds ratios (95%CI) were calculated. The statistical significance of the model was evaluated by means of the Wald test and the likelihood ratio test.

For statistical analysis only two-tailed tests were performed, 95% confidence intervals were calculated, and the conditional probability of a type I error, in the presence of a true null hypothesis, was set at < 0.05.

Statistical softwares
Statistical analysis of linear and logistic regressions was carried out in the “R” software environment for statistical computing and graphics (https://www.r-project.org/). Logistic regression analysis was performed using the car and lme4 packages. The Hosmer and Lemeshow goodness-of-fit test was performed with the Resource Selection package, whereas the Nagelkerke pseudo ($R^2$) was calculated using the rcompanion package. Odds ratios and 95% CIs for the model were calculated using the epiDisplay package. Intergroup differences between questionnaires scores were analyzed with the two-tailed Mann-Whitney-Wilcoxon test, using the R platform.
was 48 (IQR, 18). The median year of first diagnosis of CP was 2018.
Baseline clinical and psychological symptoms are shown in Table 1.

**Linear regression**
Table 2 shows the results of linear regression analyses comparing the scores of the NIH-CPSI, IPSS, IIEF and PEDT questionnaires with the scores of basic patient temperament profile, measured with the TEMPS-A test. Highly significant correlations were found between NIH-CPSI scores (total score and pain, voiding and QoL sub-scores) with most of the TEMPS-A profiles. An exception was the hyperthymic profile, which correlated significantly and negatively with the total and QoL NIH-CPSI scores. In other words, a less severe impact of prostatitis on total and QoL NIH-CPSI correlated with higher hyperthymic scores.

Conversely, the IPSS, IIEF and PEDT tests correlate poorly and in almost all cases not significantly with any of the TEMPS-A profile scores. Exceptions were the significant correlation of the IPSS scores with the TEMPS-A depressive profile and the significant negative correlation of PEDT scores with the hyperthymic TEMPS-A profile.

**Logistic regression models**
We tested the NIH-CPSI and the IPSS interval scores as predictors versus dichotomized outcomes of the GAD-7, PHQ-9 and Oxford happiness scores. Dichotomization was as follows: for the GAD-7 test, a score equal or higher than 5 predicted mild to severe anxiety according to Spitzer et al. (2006) (9); for the PHQ-9 test a score equal or higher than 10 predicted moderate to severe depression according to Kroenke et al. (2001) (5), and for the Oxford happiness test a score equal to 3.5 was the cutoff to discriminate between happy or unhappy responses (Hills & Argyle, 2002)(15).

**Table 1.**
Baseline scores of clinical symptom tests and psychological questionnaires.

<table>
<thead>
<tr>
<th>Test</th>
<th>Median score</th>
<th>Interquartile range</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIH-CPSI (total)</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>NIH-CPSI (pain domain)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>NIH-CPSI (voiding domain)</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>NIH-CPSI (QoL impact domain)</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>IPSS</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>IEF</td>
<td>26</td>
<td>8.5</td>
</tr>
<tr>
<td>PEDT</td>
<td>4</td>
<td>5.5</td>
</tr>
<tr>
<td>GAD-7</td>
<td>7</td>
<td>7.25</td>
</tr>
<tr>
<td>PHQ-9</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

**Table 2.**
Psychological profiling of chronic prostatitis patients included in our study according to the GAD-7, PHQ-9 and Oxford Happiness questionnaires. Scores are analyzed by linear regression against the total or subdomain scores of the NIH_CPSI, IPSS, IIEF and PEDT tests. Correlation coefficients are shown. Statistically significant differences are shown in bold.

<table>
<thead>
<tr>
<th></th>
<th>NIH-CPSI, Total Score</th>
<th>NIH-CPSI, Pain domain</th>
<th>NIH-CPSI, Voiding domain</th>
<th>NIH-CPSI, QoL domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kendall’s Tau (P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearson’s r (P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPS-A Cyclothymic</td>
<td>0.38</td>
<td>0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPS-A Depressive</td>
<td>0.32</td>
<td>0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPS-A Irritable</td>
<td>0.21</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPS-A Hypothymic</td>
<td>0.53</td>
<td>0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPS-A Antisocial</td>
<td>0.33</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxford Happiness</td>
<td>3.68</td>
<td>0.54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Table 3.**
Results of linear regression analyses comparing the scores of the NIH-CPSI, IPSS, IIEF and PEDT questionnaires with the scores of basic patient temperament profile, measured with the TEMPS-A test. Highly significant correlations were found between NIH-CPSI scores (total score and pain, voiding and QoL sub-scores) with most of the TEMPS-A profiles. An exception was the hyperthymic profile, which correlated significantly and negatively with the total and QoL NIH-CPSI scores. In other words, a less severe impact of prostatitis on total and QoL NIH-CPSI correlated with higher hyperthymic scores.

Conversely, the IPSS, IIEF and PEDT tests correlate poorly and in almost all cases not significantly with any of the TEMPS-A profile scores. Exceptions were the significant correlation of the IPSS scores with the TEMPS-A depressive profile and the significant negative correlation of PEDT scores with the hyperthymic TEMPS-A profile.
Bivariate analysis comparing all NIH-CPSI scores (pain, micturition, impact on QoL) with GAD-7, PHQ-9 and Oxford Happiness resulted in significant predictor scores against dichotomized anxiety (GAD-7), depression (PHQ-9) or happiness (Oxford) outcomes were found to be not statistically significant (Table 4). This was confirmed by the predictor significance and goodness-of-fit parameters shown in Table 5.

**Severity of CP symptoms in patients showing various degrees of happiness, depression and anxiety**

We investigated whether any significant difference could be observed by dichotomizing our population into two cohorts. Cohorts included patients with moderate/severe predictor scores against dichotomized anxiety (GAD-7), depression (PHQ-9) or happiness (Oxford) outcomes were found to be not statistically significant (Table 4). This was confirmed by the predictor significance and goodness-of-fit parameters shown in Table 5.

**Severity of CP symptoms in patients showing various degrees of happiness, depression and anxiety**

We investigated whether any significant difference could be observed by dichotomizing our population into two cohorts. Cohorts included patients with moderate/severe predictor scores against dichotomized anxiety (GAD-7), depression (PHQ-9) or happiness (Oxford) outcomes were found to be not statistically significant (Table 4). This was confirmed by the predictor significance and goodness-of-fit parameters shown in Table 5.

**Severity of CP symptoms in patients showing various degrees of happiness, depression and anxiety**

We investigated whether any significant difference could be observed by dichotomizing our population into two cohorts. Cohorts included patients with moderate/severe predictor scores against dichotomized anxiety (GAD-7), depression (PHQ-9) or happiness (Oxford) outcomes were found to be not statistically significant (Table 4). This was confirmed by the predictor significance and goodness-of-fit parameters shown in Table 5.

**Severity of CP symptoms in patients showing various degrees of happiness, depression and anxiety**

We investigated whether any significant difference could be observed by dichotomizing our population into two cohorts. Cohorts included patients with moderate/severe predictor scores against dichotomized anxiety (GAD-7), depression (PHQ-9) or happiness (Oxford) outcomes were found to be not statistically significant (Table 4). This was confirmed by the predictor significance and goodness-of-fit parameters shown in Table 5.

**Severity of CP symptoms in patients showing various degrees of happiness, depression and anxiety**

We investigated whether any significant difference could be observed by dichotomizing our population into two cohorts. Cohorts included patients with moderate/severe predictor scores against dichotomized anxiety (GAD-7), depression (PHQ-9) or happiness (Oxford) outcomes were found to be not statistically significant (Table 4). This was confirmed by the predictor significance and goodness-of-fit parameters shown in Table 5.

**Severity of CP symptoms in patients showing various degrees of happiness, depression and anxiety**

We investigated whether any significant difference could be observed by dichotomizing our population into two cohorts. Cohorts included patients with moderate/severe predictor scores against dichotomized anxiety (GAD-7), depression (PHQ-9) or happiness (Oxford) outcomes were found to be not statistically significant (Table 4). This was confirmed by the predictor significance and goodness-of-fit parameters shown in Table 5.

**Severity of CP symptoms in patients showing various degrees of happiness, depression and anxiety**

We investigated whether any significant difference could be observed by dichotomizing our population into two cohorts. Cohorts included patients with moderate/severe predictor scores against dichotomized anxiety (GAD-7), depression (PHQ-9) or happiness (Oxford) outcomes were found to be not statistically significant (Table 4). This was confirmed by the predictor significance and goodness-of-fit parameters shown in Table 5.

**Severity of CP symptoms in patients showing various degrees of happiness, depression and anxiety**

We investigated whether any significant difference could be observed by dichotomizing our population into two cohorts. Cohorts included patients with moderate/severe predictor scores against dichotomized anxiety (GAD-7), depression (PHQ-9) or happiness (Oxford) outcomes were found to be not statistically significant (Table 4). This was confirmed by the predictor significance and goodness-of-fit parameters shown in Table 5.

**Severity of CP symptoms in patients showing various degrees of happiness, depression and anxiety**

We investigated whether any significant difference could be observed by dichotomizing our population into two cohorts. Cohorts included patients with moderate/severe predictor scores against dichotomized anxiety (GAD-7), depression (PHQ-9) or happiness (Oxford) outcomes were found to be not statistically significant (Table 4). This was confirmed by the predictor significance and goodness-of-fit parameters shown in Table 5.

**Severity of CP symptoms in patients showing various degrees of happiness, depression and anxiety**

We investigated whether any significant difference could be observed by dichotomizing our population into two cohorts. Cohorts included patients with moderate/severe predictor scores against dichotomized anxiety (GAD-7), depression (PHQ-9) or happiness (Oxford) outcomes were found to be not statistically significant (Table 4). This was confirmed by the predictor significance and goodness-of-fit parameters shown in Table 5.

**Severity of CP symptoms in patients showing various degrees of happiness, depression and anxiety**

We investigated whether any significant difference could be observed by dichotomizing our population into two cohorts. Cohorts included patients with moderate/severe predictor scores against dichotomized anxiety (GAD-7), depression (PHQ-9) or happiness (Oxford) outcomes were found to be not statistically significant (Table 4). This was confirmed by the predictor significance and goodness-of-fit parameters shown in Table 5.

**Severity of CP symptoms in patients showing various degrees of happiness, depression and anxiety**

We investigated whether any significant difference could be observed by dichotomizing our population into two cohorts. Cohorts included patients with moderate/severe predictor scores against dichotomized anxiety (GAD-7), depression (PHQ-9) or happiness (Oxford) outcomes were found to be not statistically significant (Table 4). This was confirmed by the predictor significance and goodness-of-fit parameters shown in Table 5.

**Severity of CP symptoms in patients showing various degrees of happiness, depression and anxiety**

We investigated whether any significant difference could be observed by dichotomizing our population into two cohorts. Cohorts included patients with moderate/severe predictor scores against dichotomized anxiety (GAD-7), depression (PHQ-9) or happiness (Oxford) outcomes were found to be not statistically significant (Table 4). This was confirmed by the predictor significance and goodness-of-fit parameters shown in Table 5.

**Severity of CP symptoms in patients showing various degrees of happiness, depression and anxiety**

We investigated whether any significant difference could be observed by dichotomizing our population into two cohorts. Cohorts included patients with moderate/severe predictor scores against dichotomized anxiety (GAD-7), depression (PHQ-9) or happiness (Oxford) outcomes were found to be not statistically significant (Table 4). This was confirmed by the predictor significance and goodness-of-fit parameters shown in Table 5.

**Severity of CP symptoms in patients showing various degrees of happiness, depression and anxiety**

We investigated whether any significant difference could be observed by dichotomizing our population into two cohorts. Cohorts included patients with moderate/severe predictor scores against dichotomized anxiety (GAD-7), depression (PHQ-9) or happiness (Oxford) outcomes were found to be not statistically significant (Table 4). This was confirmed by the predictor significance and goodness-of-fit parameters shown in Table 5.

**Severity of CP symptoms in patients showing various degrees of happiness, depression and anxiety**

We investigated whether any significant difference could be observed by dichotomizing our population into two cohorts. Cohorts included patients with moderate/severe predictor scores against dichotomized anxiety (GAD-7), depression (PHQ-9) or happiness (Oxford) outcomes were found to be not statistically significant (Table 4). This was confirmed by the predictor significance and goodness-of-fit parameters shown in Table 5.

**Severity of CP symptoms in patients showing various degrees of happiness, depression and anxiety**

We investigated whether any significant difference could be observed by dichotomizing our population into two cohorts. Cohorts included patients with moderate/severe predictor scores against dichotomized anxiety (GAD-7), depression (PHQ-9) or happiness (Oxford) outcomes were found to be not statistically significant (Table 4). This was confirmed by the predictor significance and goodness-of-fit parameters shown in Table 5.

**Severity of CP symptoms in patients showing various degrees of happiness, depression and anxiety**

We investigated whether any significant difference could be observed by dichotomizing our population into two cohorts. Cohorts included patients with moderate/severe predictor scores against dichotomized anxiety (GAD-7), depression (PHQ-9) or happiness (Oxford) outcomes were found to be not statistically significant (Table 4). This was confirmed by the predictor significance and goodness-of-fit parameters shown in Table 5.

**Severity of CP symptoms in patients showing various degrees of happiness, depression and anxiety**

We investigated whether any significant difference could be observed by dichotomizing our population into two cohorts. Cohorts included patients with moderate/severe predictor scores against dichotomized anxiety (GAD-7), depression (PHQ-9) or happiness (Oxford) outcomes were found to be not statistically significant (Table 4). This was confirmed by the predictor significance and goodness-of-fit parameters shown in Table 5.
versus absent or very mild anxiety or depression. The Oxford score was also used to distinguish patients showing a happiness versus little or no happiness. Dichotomization thresholds are indicated in the previous paragraph.

Table 6 shows that the pain, quality of life impact, and total scores of the NIHCPSI test are significantly higher in patients with moderate to severe depression or anxiety and in patients with a poor Oxford happiness score. A significantly higher NIHCPSI voiding score was related to moderate to severe depression, but no difference was observed between patients with or without symptoms of anxiety and between patients reporting or not psychological well-being.

The IPSS score was significantly higher in patients showing a poor Oxford happiness score.

**Discussion**

The bidirectional relationship between psychological disturbances and prostatitis is complex, with several factors interacting or interfering with each other (16). Our findings can be divided into two sections, the first evaluating correlations between measures of anxiety, depression, and psychological well-being and the scores of symptoms associated with CP/CPPS as measured with NIHCPSI and questionnaires evaluating sexual function (IIEF or PEDT).

---

**Table 5.**

Predictor significance and goodness-of-fit parameters of the logistic regression models shown in Table 3.

<table>
<thead>
<tr>
<th>Psychometric test (outcome)</th>
<th>Test</th>
<th>Prostatitis/Prostate Symptom Scores (predictor)</th>
<th>NIH-CPSI, Total Score</th>
<th>NIH-CPSI, Pain domain</th>
<th>NIH-CPSI, Voiding domain</th>
<th>NIH-CPSI, QoL domain</th>
<th>IPSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAD-7</td>
<td>Wald</td>
<td>$\chi^2 = 12.66, P = 0.0035$</td>
<td>$\chi^2 = 17.11, P &lt; 0.001$</td>
<td>$\chi^2 = 4.75, P = 0.03$</td>
<td>$\chi^2 = 13.63, P = 0.0022$</td>
<td>$\chi^2 = 1.77, P = 0.18$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Likelihood Ratio</td>
<td>$\chi^2 = 14.61, P = 0.001$</td>
<td>$\chi^2 = 20.16, P &lt; 0.001$</td>
<td>$\chi^2 = 6.06, P = 0.043$</td>
<td>$\chi^2 = 15.50, P = 0.0001$</td>
<td>$\chi^2 = 1.87, P = 0.17$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hosmer &amp; Lemeshow</td>
<td>$\chi^2 = 19.24, P = 0.013$</td>
<td>$\chi^2 = 4.22, P = 0.63$</td>
<td>$\chi^2 = \text{n.a.}$</td>
<td>$\chi^2 = 3.22, P = 0.09$</td>
<td>$\chi^2 = 6.22, P = 0.01$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nagelkerke</td>
<td>$w^2 = 0.304$</td>
<td>$w^2 = 0.052$</td>
<td>$w^2 = 0.118$</td>
<td>$w^2 = 0.071$</td>
<td>$w^2 = 0.079$</td>
<td></td>
</tr>
<tr>
<td>PHQ-9</td>
<td>Wald</td>
<td>$\chi^2 = 19.76, P &lt; 0.001$</td>
<td>$\chi^2 = 16.49, P &lt; 0.001$</td>
<td>$\chi^2 = 9.26, P = 0.0024$</td>
<td>$\chi^2 = 11.30, P = 0.00074$</td>
<td>$\chi^2 = 0.18, P = 0.67$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Likelihood Ratio</td>
<td>$\chi^2 = 21.53, P &lt; 0.001$</td>
<td>$\chi^2 = 20.62, P &lt; 0.001$</td>
<td>$\chi^2 = 5.54, P = 0.002$</td>
<td>$\chi^2 = 13.30, P = 0.0007$</td>
<td>$\chi^2 = 0.18, P = 0.67$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hosmer &amp; Lemeshow</td>
<td>$\chi^2 = 5.87, P = 0.061$</td>
<td>$\chi^2 = 1.66, P = 0.98$</td>
<td>$\chi^2 = 0.65, P = 0.99$</td>
<td>$\chi^2 = 1.87, P = 0.98$</td>
<td>$\chi^2 = 0.01, P = 0.51$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nagelkerke</td>
<td>$w^2 = 0.469$</td>
<td>$w^2 = 0.646$</td>
<td>$w^2 = 0.591$</td>
<td>$w^2 = 0.045$</td>
<td>$w^2 = 0.048$</td>
<td></td>
</tr>
<tr>
<td>Oxford Happiness Score</td>
<td>Wald</td>
<td>$\chi^2 = 8.36, P = 0.038$</td>
<td>$\chi^2 = 9.27, P = 0.023$</td>
<td>$\chi^2 = 2.31, P = 0.072$</td>
<td>$\chi^2 = 3.99, P = 0.34$</td>
<td>$\chi^2 = 0.08, P = 0.35$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Likelihood Ratio</td>
<td>$\chi^2 = 3.44, P = 0.022$</td>
<td>$\chi^2 = 10.73, P = 0.0011$</td>
<td>$\chi^2 = 3.28, P = 0.009$</td>
<td>$\chi^2 = 6.50, P = 0.011$</td>
<td>$\chi^2 = 3.91, P = 0.047$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hosmer &amp; Lemeshow</td>
<td>$\chi^2 = 6.83, P = 0.05$</td>
<td>$\chi^2 = 6.94, P = 0.54$</td>
<td>$\chi^2 = 3.22, P = 0.059$</td>
<td>$\chi^2 = 3.63, P = 0.29$</td>
<td>$\chi^2 = 3.77, P = 0.15$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nagelkerke</td>
<td>$w^2 = 0.293$</td>
<td>$w^2 = 0.045$</td>
<td>$w^2 = 0.315$</td>
<td>$w^2 = 0.412$</td>
<td>$w^2 = 0.201$</td>
<td></td>
</tr>
</tbody>
</table>

NIHCPSI: National Institutes of Health Chronic Prostatitis Symptom Score (QoL, impact of the disease on the quality of life of patients).
IPSS: International Prostate Symptom Score.
GAD-7: General Anxiety Disorder-7.
PHQ-9: Patient Health Questionnaire-9.
SE: Standard Error.
96% CI: 95% Confidence Interval.
P: statistical probability of an alpha error.
EL 50: median effective level, i.e., symptom score associated with 50% probability of the psychometric test outcome.

**Table 6.**

Severity of CP symptoms in patients showing various degrees of happiness, depression and anxiety. Statistically significant differences are shown in bold.

<table>
<thead>
<tr>
<th></th>
<th>GAD-7 0-4 median (IQR)</th>
<th>GAD-7 5-21 median (IQR)</th>
<th>P (Mann-Whitney)</th>
<th>PHQ-9 1-9 median (IQR)</th>
<th>PHQ-9 10-27 median (IQR)</th>
<th>P (Mann-Whitney)</th>
<th>Oxford happiness &gt;3.5 median (IQR)</th>
<th>Oxford happiness &lt; 3.5 median (IQR)</th>
<th>P (Mann-Whitney)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIHCPSI Total score</td>
<td>15 (14)</td>
<td>21 (19)</td>
<td>0.0003</td>
<td>18 (14)</td>
<td>28 (15)</td>
<td>0.0002</td>
<td>12 (15)</td>
<td>19 (9)</td>
<td>0.0074</td>
</tr>
<tr>
<td>NIHCPSI Pain score</td>
<td>7 (6)</td>
<td>11 (9)</td>
<td>0.0002</td>
<td>8 (6)</td>
<td>13 (9.5)</td>
<td>&lt; 0.0001</td>
<td>1.5 (10)</td>
<td>10 (5)</td>
<td>0.0083</td>
</tr>
<tr>
<td>NIHCPSI Voiding score</td>
<td>2 (3)</td>
<td>3 (3.5)</td>
<td>0.073</td>
<td>2 (4)</td>
<td>4 (5)</td>
<td>0.0024</td>
<td>2 (5)</td>
<td>3 (3)</td>
<td>0.21</td>
</tr>
<tr>
<td>NIHCPSI Quality of life impact score</td>
<td>5 (5)</td>
<td>7 (6)</td>
<td>0.0003</td>
<td>6 (4)</td>
<td>10 (5)</td>
<td>0.0005</td>
<td>5 (6)</td>
<td>7 (3)</td>
<td>0.025</td>
</tr>
<tr>
<td>IPSS score</td>
<td>6 (10)</td>
<td>8 (8)</td>
<td>0.27</td>
<td>7 (8.75)</td>
<td>8 (10)</td>
<td>0.15</td>
<td>6 (9)</td>
<td>9 (10)</td>
<td>0.048</td>
</tr>
<tr>
<td>IEF score</td>
<td>27 (4.5)</td>
<td>35 (10)</td>
<td>0.123</td>
<td>25.5 (9)</td>
<td>26 (6)</td>
<td>0.88</td>
<td>26 (6.75)</td>
<td>27 (14)</td>
<td>0.41</td>
</tr>
<tr>
<td>PEDT score</td>
<td>4 (4.25)</td>
<td>5 (6)</td>
<td>0.37</td>
<td>4 (5.5)</td>
<td>2.5 (6.25)</td>
<td>0.34</td>
<td>4 (5)</td>
<td>4 (6)</td>
<td>0.63</td>
</tr>
</tbody>
</table>

NIHCPSI: National Institutes of Health Chronic Prostatitis Symptom Score.
IPSS: International Prostate Symptom Score.
GAD-7: General Anxiety Disorder-7.
PHQ-9, Patient Health Questionnaire-9.
PTD), the second studying the correlation of CP/CPPS symptom intensity and different personality traits.

Among patients with CP/CPPS, a higher rate of psychiatric disorders as diagnosed by a psychiatrist using a semi-structured interview was previously observed (17). The higher rate of patients with CP/CPPS on psychiatric drugs can also be considered a reliable measure of the association between an existing substrate of psychiatric conditions and the subsequent onset of chronic prostatitis (18, 19).

A recent metanalysis (20) found several case-control studies showing higher scores of psychological disturbances in CP/CPPS using a variety of diagnostic tools. Some of those series showed a corelation of symptoms measured with NIH-CPSI and the severity of psychological dysfunctions.

The results of our study confirm a good correlation between NIH-CPSI scores (total, pain, voiding and QoL) and measures of depression, anxiety, and psychological well-being although median values of these measures are indicative of mild disturbances.

However, the question whether chronic prostate inflammation is the cause of anxiety or depression, or, on the contrary, a chronic depressive or anxious condition can generate or enhance the symptoms of chronic prostatitis remains still unsolved.

In our series, logistic regression analysis of increasing NIH-CPSI score as predictor of the dichotomized GAD-7 test outcome (absent versus mild-to-severe anxiety) showed that anxiety in at least 50% of cases (EL50) is predicted by very low levels of the NIH-CPSI total score (4.88), pain score (3.07), voiding score (2.03) and QoL score (2.58). This finding could suggest that an anxious profile may be an “background” feature independent from the prostatitis syndrome. In other words, it may be hypothesized that traits of preexisting anxiety may be part of the general psychological profile of an individual, and that this may precede the manifestation of chronic prostatitis and, when the syndrome presents, lead to an exaggerated perception of its symptoms.

On the contrary, poor correlation of IPSS scores with GAD-7, PHQ-9 and Oxford scores may be explained by the structure of the IPSS questionnaire that is designed to assess symptoms of prostatism including voiding symptoms related to bladder neck obstruction rather than filling or irritative symptoms that are typical of prostatitis. When our CP/CPPS patients with and without psychological disorders were separately assessed, the total NIH-CPSI scores and the sub scores for pain and QoL were higher in patients with psychological dysfunction compared to those without. Conversely, voiding sub scores were different in patients with depression but not in those with anxiety or psychological distress. This finding suggests that pain symptoms are crucial in the comorbidity of CP/CPPS and depression or anxiety.

Although the prevalence of erectile dysfunction was high in our series (52% of patients showed an IIEF score ≤ 26), we did not find significant correlations between anxiety, depression and psychological well-being scores and the IIEF-5 and PEDT scores. This observation contrasts with the common knowledge that psychological disorders negatively impact sexual function (21-23). On the contrary, the lack of a relationship between psychological dysfunctions and sexual functioning in a CP/CPPS population could be explained by a prevalent impact of other factors in the pathogenesis of sexual dysfunction in CP/CPPS subjects (inflammatory cytokines, vascular dysfunction) (24).

Information on the impact of personality traits in CP/CPPS patients is scarce. In the present study, we administered TEMPS-A, which is an instrument suitable for measuring traits which could make subjects vulnerable to affective episodes. Affective temperaments (depressive, anxious, irritable, hyperthymic, and cyclothymic) are regarded as subclinical manifestations and high-risk states for various affective disorders and some somatic diseases (25).

In our series, scores for depressive, anxious, irritable, and cyclothymic characters were significantly and positively correlated with NIH-CPSI scores, showing that all these traits may increase the clinical expression of the disease. On the contrary, a hyperthymic character was negatively correlated with the severity of total NIH-CPSI scores and NIH-CPSI QoL sub score.

Temperaments affected the International Prostate Symptom Score (IPSS) with a similar trend, although correlation was statistically significant only for depressive temperament. In fact, as above discussed, both IPSS and NIH-CPSI (voiding domain) score voiding dysfunctions, but IPSS focuses more on voiding symptoms related to bladder neck obstruction (incomplete emptying, intermittency, weak stream and straining) rather than to storage symptoms, that are mainly related to prostatitis. Affective temperaments showed a limited influence on scores of sexual functions in our series, although PEDT scores were negatively correlated with hyperthymic scores. The negative correlation of PEDT scores with hyperthymic temperament scores confirms that this personality trait could be present in subjects who are able to better manage symptoms associated with prostatitis.

A limitation of this study was the lack of a cohort of healthy controls, that would have been useful to better define the clinical relevance of the levels of psychological dysfunction observed in our patients with CP/CPPS. In addition, the study design did not include measures of catastrophizing and perceived stress for a more complete assessment of the psychological profile of patients.

Previous studies confirmed an association between catastrophizing and pain intensity and quality of life whereas data on the influence of stress are less consistent (16).

Another aspect that would have deserved more attention is the interrelationship between patients and their spouses, that could have an impact on painful symptoms (26). All these aspects will be the goal of future studies.

**Conclusions**

Our results confirm the strict correlation between scores measuring anxiety, depression and well-being and scores of prostatitis-like symptoms. In particular, the presence on anxiety disorders is predicted at very low NIH-CPSI values. IPSS, an assessment tool for measuring symptoms of patients with prostatism is more focused on bladder neck obstruction symptoms and correlated poorly with measures of anxiety, depression and well-being.

No correlations were observed between scores measuring
psychological conditions and those measuring erectile and ejaculatory dysfunction. Information on temperamental profiling of patients with prostatitis-like symptoms is limited, although depressive, anxious, irritable, and cyclothymic temperaments are associated to more severe prostatitis symptoms whereas hyperthymic temperament seems to be protective against symptoms of prostatitis and ejaculatory dysfunction.

**REFERENCES**


**Correspondence**

Konstantinos Stamatou, MD
stamatousk@gmail.com
Department of Urology, Tzaneio Hospital, Pireus, Greece

Vittorio Magri, MD
vittorio.magri@asst-fbf-sacco.it
Urology Unit, ASST Fatebenefratelli Sacco, Milan, Italy

Margherita Trinchieri, MD
margherita.trinchieri@gmail.com
Psychiatry Unit, ASST Rhodense, G. Salvini Hospital, Garbagnate (Milan), Italy

Alberto Trinchieri, MD
alberto.trinchieri@gmail.com
School of Urology, University of Milan, Milan, Italy

Gianpaolo Perletti, Dr. Biol. Sci. M. Clin. Pharmacol. (Corresponding Author)
gianpaolo.perletti@uninsubria.it
Department of Biotechnology and Life Sciences, Section of Medical and Surgical Sciences, University of Instabria, Varese, Italy

**Conflict of interest:** The authors declare no potential conflict of interest.