
ADVANCES IN OCEANOGRAPHY AND LIMNOLOGY 

 

DOI:  10.4081/aiol.2016.5791 

 
SUPPLEMENTARY MATERIAL 

 
 
 
Prediction of lake surface temperature using the air2water model: guidelines, challenges, 

and future perspectives 

 
 

Sebastiano Piccolroaz 
 
 

Department of Civil, Environmental and Mechanical Engineering, University of Trento, via 

Mesiano 77, 38123 Trento, Italy 

 

 

 
Corresponding author:	s.piccolroaz@unitn.it 
  

Non
 co

mmerc
ial

 us
e o

nly



	
2	

Supplementary Material A 
The net heat flux per unit surface H!"# [Wm-2] at the air-water interface (defined as 

positive when it is directed towards the lake) can be written as follows: 

 
𝐻!"# = 𝐻! + 𝐻! + 𝐻! + 𝐻! + 𝐻!+𝐻! + 𝐻! + 𝐻! ,      (A1) 

 
 

where 

H!is the net shortwave radiative heat flux due to solar radiation actually absorbed by the lake, 

H! is the net longwave radiation emitted by the atmosphere and absorbed by the lake, H! is 

the longwave radiation emitted from the lake, H! is the latent heat flux due to evaporation and 

condensation, H!  is the sensible heat flux due to convection, H!  is the heat flux due to 

incoming precipitation, H!  is the heat exchanged with inlets/outlets, and  H!  the heat 

exchanged between surface volume and deep water or sediments.  

The last three terms are not implicitly included in the air2water model because of their 

minor effect. However, their contribution is indirectly accounted for in the calibration of 

parameters. 

The incident solar radiation approximately follows a sinusoidal annual cycle.	

Considering the shortwave reflectivity r! (albedo), which is a function of the solar zenith 

angle and of the lake surface conditions (e.g., water wave height), the net solar radiation can 

be expressed as: 

 
𝐻!(𝑡) = (1− 𝑟!) 𝑠! + 𝑠! cos 2𝜋

!
!!
− 𝑠! ,      (A2) 

 
 
where 

𝑡 is time, 𝑡! is the duration of a year in the units of time considered in the analysis (i.e., days), 

and 𝑠!, 𝑠!, and 𝑠! are coefficients that primarily depend on the latitude and the shading effects 

due to local topography and vegetation. The effect of cloud cover is not explicitly considered 

in this equation. 

Incoming and outgoing long-wave radiation is calculated by the Stefan-Boltzmann law, 

yielding to the following formulations: 

 
𝐻!(𝑇! , 𝑡) = (1− 𝑟!)𝜖!𝜎(𝑇! + 𝑇!)!,       (A3) 
𝐻! 𝑇! , 𝑡 = −𝜖!𝜎(𝑇! + 𝑇!)!,        (A4) 
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where 

𝑟! is the longwave reflectivity, generally assumed to have a constant value	 (Henderson-

Sellers, 1986), 𝜖! and 𝜖! are the emissivities of atmosphere and water, respectively, 𝜎 is the 

Stefan–Boltzmann constant (equal to 5.67x10−8 Wm−2K−4), 𝑇! =  273.15 K, and 𝑇! and 𝑇! 

are the temperatures of air and water expressed in °C. Water surface behaves almost like a 

black body, so the emissivity 𝜖! is essentially constant and close to unity. Contrarily, 𝜖! is 

more variable and depends on a number of factors among which air temperature, humidity 

and cloud cover are the most important (Imboden and Wüest, 1995).  

The latent and sensible heat fluxes are calculated through the following bulk semi-
empirical relations (Henderson-Sellers, 1986): 
 
𝐻! 𝑇! ,𝑇! , 𝑡 = 𝛼!(𝑒! − 𝑒!),        (A5) 
𝐻! 𝑇! ,𝑇! , 𝑡 = 𝛼!(𝑇! − 𝑇!),        (A6) 
 
where 

𝛼! [Wm-2hPa-1] and 𝛼![Wm-2K-1] are transfer functions primarily depending on wind speed, 

stability of the lower atmosphere, and other meteorological parameters, 𝑒! is the vapor 

pressure in the atmosphere and 𝑒! the water vapor saturation pressure at the temperature of 

water (both in [hPa]). The saturated water pressure 𝑒! can be calculated through several 

empirical formulas essentially depending on temperature, as for example the following 

exponential law: 

 
𝑒! = 𝑎 exp ! !!

!!!!
,          (A7) 

 
where 
𝑎 = 6.112 hPa, 𝑏 = 17.67, and 𝑐 = 243.5 °C (Bolton, 1980). 

Assuming air and water temperature as the only independent variables of all flux 

components, equation (1) can be suitably linearized by Taylor series expansion around long-

term averaged values of these variables (𝑇! and 𝑇!, respectively), so that 𝐻!"#can be rewritten 

as in equation (2) in the manuscript, where: 

 
H!"#,! =  H!"# !!, !! = 𝐻! + 𝐻! !! + 𝐻!  !! + 𝐻! !!, !! + 𝐻! !!, !! ,  (A8) 
!!!"#
!!! !!, !! 

= !!!
!!! !!

+ !!!
!!! !!, !!

+ !!!
!!! !!, !!

,      (A9) 
!!!"#
!!! !!, !! 

= !!!
!!!  !!

+ !!!
!!! !!, !!

+ !!!
!!! !!, !!

.      (A10) 
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By computing, for simplicity, the 1st order Taylor expansion of equations (A1) around an 

unique reference temperature (i.e., 𝑇! =  𝑇! = 𝑇), and substituting equations (A2)-(A7) into 

equations (A8)-(A10), it is easy to derive the following definitions of parameters 𝑎!, 𝑖 =

1,2,3,5,6 that appear in equation (3): 

 
𝑎! = 1 − 𝑟! 𝑠! + 𝜎 𝜖! − 𝜖! 𝑇! + 𝑇 ! 𝑇! − 3𝑇 + 𝛼! 𝑒! − 𝑎 exp !!

!!!
1 − !"

!!! ! 𝑇        

            (A11) 
 

𝑎! = 4𝜎𝜖! 𝑇! + 𝑇 ! + 𝛼! ,         (A12) 
𝑎! = 4𝜎𝜖! 𝑇! + 𝑇 ! + 𝛼! + 𝛼!𝑎 exp !!

!!!
!"

!!! ! ,     (A13) 
𝑎! = 1− 𝑟! 𝑠! + 𝑓(𝑟!!,𝛼!! ,𝛼!!, 𝑒!! ),        (A14) 
𝑎! = 0,1 ,           (A15) 
 
where the coefficients inherently influenced by meteorological (e.g., wind, cloudiness and 

precipitation) and astronomical phenomena (i.e., 𝑟!, 𝛼!, 𝛼!, and 𝑒! ) are decomposed into a 

mean (indicated by an overline) and a periodic (indicated by a prime) component, and 

𝜖! = (1− 𝑟!)𝜖!.  

A straightforward quantification of the parameters in equations (A11)-(A15) is not 

obvious since most of the physical coefficients involved do not have a single unambiguous 

value, but rather they can span a range of values that depends on several factors that are 

difficult to specify a priori . In particular, the definition of parameter 𝑎! is complex, as it 

integrates the seasonal variability of all external forcing other than air temperature, albeit it is 

primarily associated with the amplitude of the annual variations of the solar radiation [see the 

first term of equation (A14)]. Model calibration is therefore required (see Methods section).  

As a final remark, it should be noticed that after Toffolon et al. (2014) the notation of 

models parameters is slightly different than in the original paper: 𝑎!corresponding to 𝑐! in 

Piccolroaz et al. (2013), 𝑎! to 𝑐!, 𝑎! to 𝑐! − 𝑐!, 𝑎! to 𝑐!, and 𝑎! to 𝑐!. Furthermore, the sign 

of the second term of parameter 𝑎! (i.e., 𝑐!) was wrong in the original paper by Piccolroaz et 

al. (2013), and is now corrected in equation (A11). 
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Supplementary Material B 
The Particle Swarm Optimization algorithm is an evolutionary and self-adaptive 

search optimization technique based on an iterative procedure inspired by animal social 

behaviour. At every iteration, the hyperspace of parameters is explored by 𝑁particles each 

one identifying a different set of parameters. The particles move within the hyperspace of 

parameters according to three velocity components: a spatially constant drift 𝒗!! (the subscript 

𝑖 referring to the i-th parcel, and the superscript 𝑘 to the k-th iteration), and two random jumps 

whose amplitude depends on the current distance of the particle from the best position it 

explored during its movement (𝒑!"#$,!! , where 𝑝 stands for partial) and on the current distance 

of the particle from the best position explored in absolute by all particles before that time 

(𝒈!"#$! , where 𝑔 stands for global). Both bests are updated dynamically as the particles find 

better solutions. At each iteration k the positions 𝒙!! of the i-th particle is updated according to 

the following expression: 

  
𝒗!! = ω𝒗!! + 𝑐!𝒓!! 𝒑!"#$,!! − 𝒙!! + 𝑐!𝒓!! 𝒈!"#$! − 𝒙!! ,
𝒙!! = 𝒙!!!!+𝒗!!  ,                                                                    

    (B1) 

 
where 
ω is an inertia weight, which reduces the drift with the number of iterations, 𝑐! and 𝑐! are 

constants known as cognitive and social learning factors, respectively, and 𝒓!!  and 𝒓!! are 

arrays of uniformly distributed random numbers bounded between 0 and 1. Note that 𝒙, 𝒗, 𝒓𝟏, 

𝒓𝟐, 𝒑, and 𝒈 are vector having dimension equal to the number of parameters. Following the 

indications provided in the work of Robinson and Rahmat-Samii (2004), 𝑐! = 𝑐! = 2, and ω 

has been set to vary linearly from 0.9 at 𝑘 = 1 to 0.4 at the final iteration. In the analysis 

presented here, the number of both particles and iterations are chosen equal to 1000, which 

showed to provide good convergence. Furthermore, absorbing wall boundary conditions are 

used, which means that when a particle hits the boundary of the search space, the velocity 

component normal to that boundary is set to zero. 
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