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Morphological and physiological adaptations
of wood-boring beetle larvae in timber

Abstract - Beetles which develop boring tunnels inside and feed on seasoned wood 
present morphological and physiological adaptations related to the specific activi-
ties of their larvae in such a peculiar substrate. As far as protection of antiquarian 
goods made of wood is concerned, we are dealing mainly with three Coleoptera 
families, namely Lyctidae, Anobiidae, and Cerambycidae, which include species 
with wood-boring larvae. The adaptation to wood-boring and wood-feeding ac-
tivities in beetle larvae was reached independently by phyletic lines not closely 
related, as a convergent evolution due to feeding behaviour.
Among these adaptations, the following are examined with reference to the three 
families mentioned above. The conformation and activity of the larval mandibles 
and their possible correlations with the characteristics of the wood attacked are 
considered together with the presence of body structures for anchoring the larvae 
to the wood substrate inside the tunnel during the gnawing action. Intracellular 
endosymbiosis (endocytobiosis) with yeasts or bacteria, capable of supplementing 
larval diets lacking in some essential nutrients, and its main features are sum-
marized. Last, structural and functional characteristics are discussed as regards 
tracheal spiracles, provided with filter devices important for preventing intrusion 
of wood powder into tracheae from larval tunnels as well as useful for avoiding 
dehydration.

Key words: Coleoptera, Lyctidae, Anobiidae, Cerambycidae, convergent evolu-
tion, wood-feeding, mouthparts, anchoring devices, endocytobiosis, spiracles.

A unique environment and food
Wood-boring beetles, which develop by digging tunnels in timber, live in a rather 

unusual environment and substrate, passing their larval life sealed inside the wood 
mass, without communication with the external environment. Only in the case of heavy 
or protracted infestations, when there is a higher possibility that new and old tunnels 
intersect, may they be in communication with the outside, through the exit holes of the 
previous generations.

The larvae, which penetrate the timbered tissue directly, after having completed 
embryonic development and hatching, feed exclusively on wood (unless the timber 
is invaded by fungal mycelia), extracting from this substrate all the main nutrients 
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and water they need for their metabolism and development. Being confined within the 
wood mass, they display adaptations to this kind of life and, at the same time, to the 
food available, i.e. to living within wood and to living off wood (Cymorek, 1968). Of 
course, these two aspects are closely interconnected.

We first consider the type of environment determined by the xylophagous regime 
and the endophytic lifestyle. Wood, and timber even more so, is a hard and resistant 
substrate, which generally is attacked from the inside, so as to have an attachment 
point. In fact, since larvae remove the wood particles with their mandibles, being able 
to fracture its surface without having an anchorage would be extremely difficult. As the 
endophytic larvae explicate their feeding activity, they gradually penetrate the wood 
mass, thus finding themselves trapped in the tunnel they are digging. Actually, the tun-
nel is closed in front by sound wood and behind it is smaller than the larvae, because of 
their minor development during the period when it was dug. Its diameter is usually ap-
proximately the same as that of the larva, the empty space around it being very reduced, 
in order to improve larval digging efficiency.

Therefore, the larvae spend their entire lives in a closed and dark environment, 
which provides food and protection. Their movement is limited to the digging action, 
functional to feeding, and consequently to the progression of the tunnel, gradually 
lengthened forward. Usually only at completion of preimaginal development, mature 
larvae slightly widen the tunnel in view of pupation.

Their tunnelling activity also causes the production of frass, which occupies the 
back of the gallery and differs in consistency and granulometry, depending on the 
wood-boring species.

These are the conditions of preimaginal life shared by most wood-boring beetles 
which damage cultural artifacts and that determine their functional adaptations. Other 
conditions, however, may vary; for example the type of wood, which may have a dif-
ferent composition and hardness, depending on the essence and the part of the trunk 
or branch from which the attacked timber derives (Battisti, 2001). It is known that the 
duramen contains mainly cellulose, together with hemicellulose and lignin, and very 
little starch, while the sapwood still maintains a high percentage of starch. Different 
food preferences, related to a different set of available digestive enzymes, orient the 
various wood-borers towards one or the other type of substrate.

Feeding and boring in wood, a convergent evolution
Although wood is a food poor in some essential nutrients, among Hexapoda, xy-

lophagy is a rather widespread feeding habit, common to orders, families and gen-
era not closely related to each other. A number of exopterygote insects, such as some 
Blattaria and all the Isoptera, are xylophagous. For these, wood represents food not 
only during postembryonic development but also during adult life (Chopard, 1949; 
Grassé, 1949). A large number of endopterygote insects such as, for example, species of 
Lepidoptera Cossidae and Sesiidae, Hymenoptera Siricidae and Coleoptera Scarabae-
oidea, Buprestidae, Lyctidae, Bostrichidae, Anobiidae, Lymexylonidae, Oedemeridae, 
Cerambycidae, Curculionoidea (Scolytidae, etc.), are xylophagous as well, but, in this 
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case, wood-feeding (mostly wood-boring) is generally limited to the larval instars, with 
a variety of trophic specializations and different needs of ecto- or endosymbiotic as-
sociations (Jeannel & Paulian, 1949; Grandi, 1951; Ebeling, 1978; Borror et al., 1989). 
Therefore, it is obvious that xylophagy represents a trophic specialization indepen-
dently achieved many times in phylogenetically distant insect orders.

Quality and other characteristics of the wood attacked, as well as the mode of attack 
and nutrient mobilization, may vary not only from one systematic group to another, but 
also inside the same group of closely related taxa. Certain species have a more ample 
range with regard to the conditions of the wood substrate, others a more restricted one; 
there are species which prefer healthy wood, others which feed on wood already dam-
aged by biotic or abiotic factors, others which disseminate it with microscopic fungi in 
order to make it more suitable as food, others which need dead but still sound wood, 
others which, in contrast, require rotten wood (saproxylophagy), etc. (Grandi, 1951; 
Masutti, 2003).

As far as spatial relationship is concerned, feeding and development can take place 
inside the wood mass (most frequently) or from the outside (e.g. in buried timber) 
or also through intermediate modalities. Nevertheless, as the majority of xylophagous 
beetles do not attack dry, seasoned wood but develop in living wood (even if sometimes 
suffering or decaying), only a few families of wood-boring beetles, principally Ceram-
bycidae (long-horned beetles), Lyctidae (powderpost beetles), and Anobiidae, are of 
interest with regard to the protection of timber in various phases of its use, particularly 
wood structures of antiquarian, historical and artistic value (Chiappini et al., 2001).

Apart from some more recent rearrangements by the subsequent authors, the main 
traits of the phylogeny of the Coleoptera, according to current opinion (Laurence & 
Newton, 1982; Grimaldi & Engel, 2006), do not differ substantially from the arrange-
ment outlined by Crowson (1960) around the middle of the last century.

Crowson (1955; 1960), basing his conclusions also on the contributions of some 
previous authors, recognized four suborders in the Coleoptera order. Of these, two (Ar-
chostemata, Mixophaga) are very small and two (Adephaga, Polyphaga) very large. 
Their adaptive radiation was partly due to the different feeding specializations and 
resulted in the very scarce and primitive Archostemata (primarily endophytic xylopha-
gous and mainly neotropical), the zoophagous Adephaga, the initially mycetophagous 
and subcorticicole Polyphaga. This is the most recent and largest Coleoptera suborder, 
characterized by the greatest evolutionary success as well as by secondary differentia-
tions in an extremely various diversity of trophic niches. The xylophagous beetles of 
applied interest belong to Polyphaga; in this suborder wood-boring and wood-feeding 
habits were independently reached many times by single systematic groups pertaining 
to various lines. Among them are found the series Bostrichiformia, comprising the su-
perfamily Bostrichoidea (with Lyctidae, Bostrichidae, Anobiidae) as well as Cucujifor-
mia comprising, among others, the superfamilies Lymexylonoidea (with Lymexyloni-
dae), Chrysomeloidea (with Cerambycidae), and Curculionoidea (with Curculionidae) 
(Fig. 1).

In the same way as happened at insect order level, also among Coleoptera, an 
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extremely large order, xylophagy appears to be the result of a convergence of many 
phyletic lines more or less distant from each other.

Fig. 1 - Cladogram of phyletic relations among suborders and superfamilies of Coleoptera (modi-
fied after Tremblay, 2000).

Adaptations to feeding on seasoned wood
As mentioned above, the nutrients present in the wood are basically starch, hemi-

cellulose and cellulose; the latter, however, is not easy to digest. The larvae of some 
species of wood-boring beetles may be restricted to using starch alone, but others are 
able to digest cellulose. Depending on whether the larva is able to use it or not, the 
feeding mode can vary, starting from the conformation and function of the mouth ap-
pendages, to producing and ingesting more or less fine wood particles.

The attack on a substrate as hard as wood may also require that the larva has on its 
body surface some structures that enhance its grip on the wooden substrate while the 
action of the jaws is performed (Cymorek, 1968).

In addition, considering the wood as the food substrate, besides requiring that the 
larva have a set of enzymes for cellulose digestion, which not all wood-boring species 
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do, wood is also deficient in essential nutrients, such as vitamins, amino acids and lip-
ids, that have to be found elsewhere, generally by means of symbiosis with microorgan-
isms (Nardon & Grenier, 1989).

The following notes refer to such features in the three main families of wood-
boring beetles in which we find the most common and important pests of seasoned 
wood and timber.
Biting off and type of wood attacked

Watanabe & Tokuda (2010) state the importance of the digestive system morphol-
ogy in order to understand cellulose digestion. The first step of digestion takes place at 
mouth level. In wood-boring Coleoptera, both adults and larvae have chewing mouth-
parts. In the larvae of different taxa of wood-boring Coleoptera, the general organiza-
tion is the same: the labrum is subrectangular and bordered with setae on the distal 
margin; laterally and posteriorly to it mandibles are present and, behind these, the max-
illae with galea, lacinia and palps; back and medially, the labium, with postmentum, 
prementum and palps (Fig. 2).

Mandibles are the appendages used to break down wood. They are usually short 
and heavily sclerotized, especially along the medial margin, where the strength of the 
jaws seems to be due to the presence of zinc and manganese that have been found in 
larval mandibles of anobiids and long-horned beetles (Hillerton et al., 1984, Morgan 
et al., 2003).

The overall shape of the mandibles of wood-boring larvae is very much the same; 
even if morphological differences are present between different taxonomic entities. In 
most Anobiidae, the larvae exhibit toothed mandibles with a medial margin character-
ized by triangular teeth (Fig. 2, A). This shape makes it possible to detach little wooden 
pieces from the timber mass, which are subsequently brushed into the cibarium by 
means of labrum, laciniae, and labium setae.

Lyctid larvae, such as those of Lyctus linearis (Goeze) (Fig. 2, B), have “chisel-
shaped” mandibles, with the medial margin, perpendicular to its major axis, without 
teeth but linear and sharp.

The same type of mandible is present in cerambycid larvae (Haack & Slansky, 1987) 
like, for example, those of Hylotrupes bajulus (Linnaeus) (Schmidt & Parameswaran, 
1977) and those of  Trichoferus holosericeus (Rossi) (Fig. 2, C). Mandibles shaped 
much like these are also found in Ptilinus pectinicornis (Linnaeus) (Anobiidae), where 
the remains of a small tooth are present in the lower corner of the medial margin (Fig. 
2, D).

Being present in Coleoptera families phylogenetically far from each other (Anobi-
idae, Cerambicidae, Lyctidae) (Fig. 1), contrary to what was stated by Schmidt (1966), 
the peculiar shape of these jaws does not appear to be linked to the systematic group 
but could represent an evolutionary convergence due to the type and mode of feeding 
and digestion.

Watanabe & Tokuda (2010) assumed that the reduction in size of the mandibles in 
wood-eating insects would confer an advantage by allowing finer wood powder to be 
produced, that would correspond to an increased “exposure of cellulose fibers buried 
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in hemicellulose and lignin”, thus enhancing “the access of cellulolytic enzymes to 
cellulose”. Nevertheless, they specifically state that “it has not been elucidated so far 
whether a reasonable correlation exists between designs and sizes of mandibles and the 
efficiency of wood crushing in coleopterans”.

The study of the frass produced by these different types of larvae, considering the 
size of the individuals producing it, can help to elucidate larval habits (Solomon, 1977). 
The species having toothed mandibles produce gritty frass consisting of fusiform faecal 
particles, thus indicating that all the dug wood passes through the alimentary canal. On 
the contrary, all the species considered that possess chisel-shaped mandibles produce 
a very fine frass, mixed with faeces, thus signifying that they dig more wood than they 
ingest. In addition, we observed that toothed mandibles are able to detach little pieces 
of wood from the mass, while chisel-shaped mandibles make it possible to pulverize 
the wood to very fine fragments.

Fig. 2 - Larval biting mouthparts of four species of wood-boring beetles: A. Stegobium pani-
ceum (Linnaeus) with mandibles characterized by triangular teeth on their medial margin. B. 
Lyctus linearis (Goeze) with “chisel shaped” mandibles, with linear and sharp medial margin. C. 
Trichoferus holosericeus (Rossi) with chisel-shaped mandibles. D. Ptilinus pectinicornis (Lin-
naeus), with  mandibles very similar to chisel-shaped ones but with remains of a small tooth in 
the lower corner of the medial margin.
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In agreement with Watanabe & Tokuda (2010), this could be functional to better 
digestion of cellulose but we hypothesize that the rupture of cell walls would expose 
the starch granules which should thus be available for digestion. Therefore, these man-
dibles would be suited to larvae that feed mainly on starch and which, being unable or 
not very efficient in cellulose digestion, need to gain access to starch without neces-
sitating the digestion of the cell walls.

This interpretation is consistent with the kind of wood attacked by these different 
larvae. Most anobiid species, which possess toothed mandibles, also attack the dura-
men or very seasoned wood, both very low in starch, because they feed also on cel-
lulose and hemicellulose (Eaton & Hale, 1993). Of the larvae that show chisel-shaped 
mandibles, lyctid larvae feed exclusively on starch and attack sapwood of “susceptible 
hardwood species which have sufficient starch (ca. >3%)” and they are called pow-
derpost beetles because they “reduce the wood to flour-like powder” (Eaton & Hale, 
1993). Hylotrupes and Trichoferus larvae generally attack sapwood, even if they can 
also tunnel in heartwood (Eaton & Hale, 1993) and their frass also is composed of 
extremely fine wood fragments mixed with faeces (Chiappini et al., 2010). P. pectini-
cornis larva attacks sapwood and produces a fine, silky frass, densely packed (Eaton & 
Hale, 1993). It seem obvious that wood-boring Coleoptera that cannot digest cellulose 
or that digest it at a low rate take advantage of the disruption of  wood walls operated 
by chisel-shaped mandibles and, in search of starch, dig more than what they ingest, 
producing a fine frass, mixed with faeces. These type of mandibles could therefore 
represent an evolutionary convergence towards better starch utilization.
Body adaptations for anchorage

The peculiar lifestyle of the larvae of wood-boring beetles, which have a minimal 
need of movement but necessitate a tight hold on the wood, essential for their gnaw-
ing, involves morphological adaptations which can differ according to the systematic 
groups and regarding the taking off the food and the correlative locomotion. A more or 
less evident reduction of the legs in the larvae, sometimes even their total absence, cor-
responds to the limited requirement of moving in a narrow space. In the oligopod larvae 
of the Lyctidae (e.g. Lyctus spp.) and of some Anobiid species (e.g. in gen. Anobium, 
Stegobium, etc.) the legs, developed even if relatively short and tiny, seem to perform 
different functions besides moving (Cymorek, 1968). On the other hand, cerambycid 
larvae are either apod or only keep vestigial rudiments of legs (e.g. gen. Hylotrupes, 
Trichoferus) (Gardiner, 1960; Peterson, 1960). 

The need to gnaw a compact, and often very hard substrate, such as wood is, in 
addition to the structure and constitution of the mandibles mentioned above, is there-
fore met by other devices such as rough areas on the thoracic and abdominal surfaces 
of the body, as well as rows of spicules, which can be useful also for movement, but 
which principally permit the anchorage necessary to the larva during its prolonged 
feeding activity. In cerambycid larvae, for example, besides the nearly prognathous 
head, immersed into the prothorax, and bearing short and extremely strong mandibles, 
the surface of thorax and abdomen often show ambulatorial areas consisting of dorsal 
and/or ventral integumental corrugated and thickened plates (Grandi, 1951). Without 
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any doubt, the larva is helped in taking off the food also by the limited diameter of the 
tunnel and by filling it behind with compact frass and excrement.

The anobiid larvae are generally scarabaeiform (C-shaped), with a hypognathous 
head (but sometimes nearly prognathous); therefore it is likely that their activity of ex-
cavation, alimentation and progression differs in comparison with that of cerambycids. 
In the majority of their larval forms, anobiids (e.g. Anobium spp.) bear transversal rows 
of hooks on the anterior dorsal folds of most of the toracic and abdominal segments and 
on the sides of the ninth abdominal segment (Parkin, 1933; Böving, 1954). Towards the 
end of the abdomen, these hooks can be larger, clearly curved. These larvae bend and 
push their distal end towards the tunnel wall; they subsequently straighten, stretching 
forwards. 

Also in lyctids the larva is C-shaped, but the body surface (e.g. in the genus Lyctus) 
is completely free of anchoring hooks, possibly because larval activity occurs in a rela-
tively tender wood, that can be tunnelled more easily.
Endosymbiosis and nutrition

The ability of many insects to use unpromising foodstuffs, as also wood is, is due 
to cryptic microbial assistance (Dadd, 1985). Besides ectosymbiosis with fungi in am-
brosia beetles (Scolytidae), and in other wood-boring beetles (e.g. Anobium puncta-
tum (DeGeer) and Xestobium rufovillosum (DeGeer)) that develop preferably in rotten 
wood (Bletchly, 1953), it is well known that two other types of symbiosis with microor-
ganisms occur in wood-boring beetles, namely extracellular endosymbiosis, limited to 
intestinal lumen, and intracellular endosymbiosis (endocytobiosis) (Nardon & Grenier, 
1989). Both types are mutualistic symbioses, not excluding each other and with pos-
sible intermediate forms.

In wood-boring beetles, the presence and the role of gut extracellular endosymbio-
sis is still very little known (Vasanthakumar et al., 2007). The role of this type of endo-
symbiosis could be that of entirely or partly supplying enzymes, necessary for cellulose 
utilization (Chapman, 1972). In fact, even if the formerly hypothesized acquisition of 
cellulases has been challenged by the discovery of endogenous enzymes in anobiids 
and cerambycids (Parkin, 1940; Martin, 1983), the microorganisms could play a role in 
freeing cellulose and hemicellulose from lignin (Genta et al., 2005). The detoxification 
activity, that has been demonstrated for the anobiid Lasioderma serricorne (Fabricius) 
(Shen & Dowd, 1991), could also be proved for wood-boring species.

Endocytobiosis is the third type and best known symbiosis in wood-boring beetles 
infesting timber. It is a complex type of endosymbiosis which seems to have the main 
function of supplementing insect diets lacking in some essential nutrients, i.e. vitamins 
(especially of the B-group), lipids, sterols, amino acids and, maybe, other growth fac-
tors, increasing the fitness of the insect to the environment and substrate (Nardon & 
Grenier, 1989). In their turn, intracellular symbionts (endocytobiotes) take advantage 
of being protected from a dry environment and having availabile a substrate rich in 
carbon sources. There are, however, more complex metabolic interactions between host 
and endocytobiotes that behave as cellular organelles regulated by the host itself. In 
fact, they can modulate enzymatic activities, metabolism of certain amino acids, etc.. 
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Endocytobiotes are yeasts or bacteria included in specialized cells, mycetocytes 
and bacteriocytes respectively, lodged singly between the epithelial cells of the midgut, 
or grouped to form organs (symbiosomes), variously located as to the gut, named my-
cetomes and bacteriomes, respectively. 

According to the host species, symbiosomes are present only in the larvae, or both 
in larvae and adults. Endocytobiotes are always maternally inherited, following two 
main routes, as mentioned later on.

In powderpost beetles, for example in L. linearis, symbiotes are bacteria or bacte-
rium-like organisms in bacteriomes located in the posterior third of the larva, close to 
the fat body; the matrifilial transmission is transovarial. In the adult female, symbiotes 
migrate into ovaries and infect ovocytes so that the intracellular condition of the sym-
biotes in the host is therefore almost permanent. Also in Bostrichidae (a family which 
also includes some species that damage seasoned wood), for example in the genus 
Sinoxylon, endocytobiotes are bacteria or bacterium-like organisms which are transmit-
ted with transovarial modality (Nardon & Grenier, 1989).

In anobiids, endocytobiosis is widespread and relatively well-known; symbiotes are 
yeasts or yeast-like organisms, located more or less close to the midgut of the larva and 
present also in adults, in the same location. The matrifilial transmission is performed by 
the ovipositor, which is provided with intersegmental tubules and vaginal pouches from 
which the symbiotes, which secondarily transmigrated here, are expelled during the 
oviposition and fixed with secretions on the corion (egg smearing). The emerging larva 
is re-infected when it devours part of the eggshell. In Stegobium paniceum (Linnaeus), 
mycetocytes are located in ceca of the midgut, close to its junction with the foregut; in 
Anobium spp. they are gathered similarly in blind sacs, not connected with the gut; in 
P. pectinicornis, instead, mycetomes are connected with the midgut by a narrow canal.

Numerous species of Cerambycidae have been observed to be symbiotic. In cer-
ambycid endocytobiosis, similarly to anobiid ones, symbiotes are yeasts or yeast-like 
microorganisms, mycetocytes are kept in evaginations located at the beginning of the 
larval midgut (described for example in Tetropium), the matrifilial transmission occurs 
through deposition of yeasts on the egg surface. Nevertheless, endocytobiosis is less 
widespread in Cerambycidae than in Anobiidae as in many long-horned beetles (H. 
bajulus among them) it has not been found. In larvae of Cerambycidae having endocy-
tobiotes, a constant elimination of mycetocytes in the lumen of the gut can be observed, 
and constant replacement by re-infection of gut cells by yeasts exists. Therefore, as in 
this case symbiotes present an intracellular and an extracellular phase, they could repre-
sent an example of an intermediate condition between endocytobiosis and extracellular 
intestinal symbiosis (Nardon & Grenier, 1989).

Considering that the significance of endocytobiosis should be that of providing 
lacking nutrients to the larva and not enzymes for cellulose digestion, it is difficult to 
explain why it is absent in H. bajulus, which lives on seasoned wood. In fact, in Lycti-
dae, which feed exclusively on starch, these symbioses are present all the same. Not for 
this reason alone, it must be admitted that the biological significance of endocytobiosis 
in wood-boring beetles is still relatively unknown.
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Peculiar features in tracheal spiracles
Undoubtedly, the presence of more or less fine frass inside the gallery and the fact 

that such an environment is often rather or very dry also affects the respiratory system. 
Structural and functional adaptations, some evidence of which is found in the surface 
respiratory devices, the tracheal spiracles, are needed. In wood-boring larvae, the most 
obvious risk is that tiny wood fragments enter the tracheal lumen, compromising gas 
exchanges. Indeed, when the trachea is in communication with the outside, and air 
penetrates as an effect of the depression, small wood particles could be sucked into the 
inner space of the tube and occlude it. At the same time, there is the need to minimize 
water vapour losses through spiracles, due to transpiration, as a consequence of the gra-
dient existing between the lumen of tracheal ramifications and the dry air in the tunnel. 

Spiracles with highly developed filter mechanisms in order to exclude extraneous 
particles and/or to reduce loss of humidity, are suited to preventing both risks (Mill, 
1985; 1998). Nevertheless it is noteworthy that many other kinds of insects (beetles of 
other families, flies, etc.) living in heterogeneous habitat conditions, have, as Berlese 
(1909) already noted, analogous exigencies and are provided with spiracular ‘filters’ 
morphologically varying but with a common structural feature that is the presence of 

Fig. 3 - Spiracles of wood-boring beetles observed under SEM. Lyctus linearis (Goeze): A. Ab-
domen extremity of the larva with the last two spiracles; B. Penultimate abdominal spiracle; C. 
adult abdominal spiracle; D. Trichoferus holosericeus (Rossi), larval thoracic spiracle.
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ramified and intersected hairs, in order to create a barrier at the level of spiracular en-
trance.

The observation of spiracles of some of the wood-boring beetle larvae considered 
above shows clear morphological adaptations responding to the double requirement 
(Fig. 3). The operating mode of the respiratory system in insects could also explain 
the function of the filtering spiracles. When air is sucked into the tracheal lumen by 
means of the depression existing between the outside and the inside, wood particles are 
stopped by the hairs, but when the air is actively pushed out, it cleans the spiracle sieve.

The idea that this kind of spiracle represents an adaptation to the peculiar condi-
tions in which wood-boring Coleoptera larvae live could be validated by the observa-
tion that adult spiracles in the same species do not present such structures.

In conclusion, all the abovementioned structural and functional adaptations of 
wood-boring beetles, with particular reference to those damaging timber, demonstrate 
“the strong moulding force which wood passively exerted on its insect inhabitants”, 
and reflect one of the most marked specializations of beetles to a very challenging 
environment (Cymorek, 1968).
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