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Abstract 

This Perspective will discuss topics recently suggested by Prof. Helmut Kern, Vienna, Austria, 

to advance the research activities of his team, that is: Topic A, 10 years post RISE; Topic B, 

New research for new solutions on old research questions; Topic C, Working groups on nerve 

regeneration, training-parameters of seniors in different ages, muscle adaptation; and studies of 

connective tissue and cartilage. This Perspective summarizes some of the basic concepts and of 

the evidence-based tools for developing further translational research activities. Clinically 

relevant results will ask for continuous interests of Basic and Applied Myologists and for the 

support during the next five to ten years of public and private granting agencies. All together, 

they will end in protocols, devices and multidisciplinary managements for persons suffering 

with muscle denervation, neuromuscular-related or non-related pain and for the increasing 

population of old, older and oldest senior citizens in Europe and beyond. 
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In a recent Commentary in Biology, Engineering, 

Medicine (BEM), titled “From BAM to BEM, a 

personal journey through EJTM and Padua Muscle 

Days”,
1
 Prof. Ugo Carraro tried to explain how a local 

community of basic and applied myologists, since long 

organized as the Interdepartmental Myology Center of 

the University of Padova, Italy (CIR Myo), was able in 

recent years to maintain a long term tradition of skeletal 

muscles studies. In an Editorial recently published in 

the European Journal of Translational Myology 

(EJTM),
2
 he stressed that important articles were 

published in international high-impact journals by 

Padua scientists and clinicians and that contributing 

factors were both a series of dedicated International 

Conferences held in Euganei Hills and Padua 

(PaduaMuscleDays - PMD) during the last 20 years and 

the publication by an International Community of 

Myologists of more than 100 articles in EJTM during 

the last four years.
3-41

 Based upon the strong evidence 

produced by Home-based Functional Electrical 

Stimulation (h-bFES) of denervated degenerating 

muscles (DDM), as validated by the successful 

European Union (EU) Program: RISE [Use of electrical 

stimulation to restore standing in paraplegics with long-

term DDMs (QLG5-CT-2001-02191)],
43-60

 the Project 

RISE-2_Italy was established in Padua University and 

then extended to the IRCCS Fondazione Ospedale di 

Venezia-Lido, Italy with the essential support and 

expert supervision of Prof. Helmut Kern and Colleagues 

of Vienna, Austria. The opinions of compliant patients 

were heartening,
56

 and the extent to which they 

recovered ability to rise with support and to stand 

enduringly was indeed remarkable. Thus, Prof. Helmut 

Kern and Prof. Ugo Carraro hope to be able to convince 

the attendees of the incoming 2018 Spring 

PaduaMuscleDays that their bottled messages floating 

on the ocean of time will not contain the maps to the 

hidden treasure of Peter Pan’s Captain Hook or to the 

entrance to the Alibaba’s Cave, but that they will be 

steps toward the approval of research projects and 

clinical trials by ethical committees with the support of 

public and private granting agencies. This was true in 

the past.
43-44

 They hope it will be true in the future.  

With those goals in mind, this Perspective will discuss 

the following topics recently suggested by Prof. Helmut 

Kern for the future research activities of his team: Topic 

A, 10 years post RISE. Subtopics: A1, Training 

parameters on denervated degenerating muscles 

(DDM); A2, Improvement by cell therapy of exhausted 

muscle fibers in DDM; A3, Stimulation parameter 

depending on time from SCI and age; A4, Magnetic 

stimulation; A5, Stimulation during rest or sleeping to 

prolong the daily stimulation time. Topic B, New 

research for new solutions on old questions. Subtopics: 
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B1. Common new research projects as ageing is; B2, 

Translational research of new topics; B3, New research 

on biomarkers, but only from blood samples, saliva, 

skin, hairs; Topic C, Working groups on: C1, nerve 

regeneration; C2, muscle adaptation; C3, studies of 

connective tissues, including cartilage. 

Training parameters of h-bFES for DDM, 

optimized for age and denervation time: 

perspective for muscle stimulation during period 

of resting, in particular, night time 

The stimulation parameters applied for eliciting muscle 

contractions are depending on physiological conditions 

of the muscle. Of particular importance for electrical 

stimulation (ES) is whether the connection between the 

muscle and its innervating nerve is preserved or the 

muscle remains long-term denervated due to Spinal 

Cord Injury (SCI) or peripheral nerve lesions. In the 

latter cases the denervated muscle within few months 

becomes not responsive to commercial stimulators and 

undergoes ultrastructural disorganization, while severe 

atrophy with fibro-fatty degeneration and nuclear 

clumping appears within 3 and 6 years from nerve 

discontinuation.
43-48

 Information on these changes are 

essential for developing stimulation protocols, since 

functional activation of denervated muscles requires 

electrical stimulation with long impulse duration in the 

range of 20 – 150 (up to 300) msec. Moreover, contrary 

to innervated muscle where the nerve distributes the 

action potential, in the denervated muscle an electrical 

field distribution capable of depolarizing the fibers in 

almost every part of the muscle has to be achieved. 

Therefore, to counteract the deterioration of the 

denervated muscle a therapy concept for home-based 

electrical stimulation was developed. To carry out the 

training a stimulator suited to deliver the necessary 

high-intensity and long duration impulses by new large 

electrodes was designed.
49,50

 Specific clinical 

assessments to monitor the condition of the patient’s 

muscles and guidelines for training were developed at 

the Wilhelminenspital Wien, Austria.
51,52

 The novel 

therapy concept, together with newly designed devices, 

was evaluated in the RISE clinical study. After 

completing a 2-year home-based therapy program the 

subjects showed a significant increase of muscle mass 

and myofiber size, improvements of the ultrastructural 

organization and recovery of tetanic contractility with 

significant increase in developed muscle force output 

during electrical stimulation.
43,44

 EU-approved products 

(Stimulette den2x) and purpose developed large safety 

electrodes are now commercially available (Schuhfried, 

Vienna, Austria).
43,53-57

 

However, even these new tools are effective in 

preventing or recovering denervated degenerating 

muscle only if h-bFES starts early than ten years from 

SCI, with the best results achievable up to 6 years from 

permanent nerve lesions.
43-60

 

Induced muscle fiber regeneration in permanent 

denervation of skeletal muscle: Implication for 

FES of long-term denervated muscles 

The differentiation of muscle fibers regenerating in the 

absence of the nerve is well documented in animal 

experiments and in muscle biopsies harvested from 

human patients suffering with permanent long-term 

denervation.
43,44,58,59

 During the last twenty years, 

clinical studies have employed long impulse biphasic 

electrical stimulation as a first step treatment for 

humans living with long-term denervated muscles 

subsequent to SCI. Trophic and functional recovery, 

from severe atrophy/degeneration due to lower 

motoneuron damage, occurred in long-term denervated 

degenerating muscles treated with two years of h-bFES 

beginning from 1 to 5 years from SCI using purpose-

developed muscle stimulator and large electrodes that 

recently were made commercially available.
43,44

 This 

fact has sound foundations on muscle biopsy 

analyses,
43,44-60

 and on Quantitative Muscle Color 

Computed Tomography (QMC-CT) of treated 

muscles.
58-68

 On the other hand, the extent of recovery 

decreases with time elapsed from SCI with poor results 

after 7 to 10 years from lower motoneuron damage.
43,44

 

If induced-myogenesis,
5,69-81

 could be modulated in 

patients during the many months needed to recover 

tetanic contractility of denervated muscles, the period to 

achieve functional recovery of long term denervated 

human muscle by h-bFES will be shortened and 

possibly obtained also when h-bFES will be started later 

than ten years from SCI.  

Recent advances on conversion (i.e. transdifferentiation, 

see https://stemcells.nih.gov/info/basics/4.htm)
82

 of 

adult differentiated somatic human cells, e.g., surface 

epithelia and fibroblasts, to fully potential stem cells 

able to induce and maintain high-level myogenesis, may 

provide personalized treatments that may open new 

hope for the vast majority of people in need, i.e., those 

patients at more than 8 years from SCI.
43,44

 For more 

detailed discussion of stem cells potentials, see at: 

https://stemcells.nih.gov/info.htm a NIH's Stem Cell 

Reports.
83,84

 

Histopathological analyses of skin in DDM: New 

options for h-bFES and beyond 

The skin is the body’s heaviest sensory organ, 

accounting for approximately 16% of the body’s weight. 

Other functions are protection from chemical, physical 

and biological insults and maintenance of the internal 

environment.
85

 Several pathologies are associated to 

skin changes affecting skin cells and other structural 

proteins, thickness of the various epidermal layers, 

inflammatory cells, and amount of water.
86

 Qualitative 

and quantitative analysis of several components and 

properties of the skin are necessary to understand these 

disorders and to follow-up eventual managements. 

Previous studies have shown that denervated 



Interrelations of mobility disorders and pain  

Eur J Transl Myol 27 (4): 225-233 

227 

 

Quadriceps muscles of patients suffering with complete 

conus and cauda equina lesions were rescued by two 

years of home-based functional electrical stimulation (h-

bFES) using a new electrical stimulator and very large 

skin electrodes.
43,44

 Muscle mass, force, and structure of 

the stimulated Quadriceps muscles were studied before 

and after 2 years of h-bFES, using: Computed 

Tomography (CT), measurements of knee torque during 

stimulation, and muscle biopsies which were analyzed 

by light and electron microscopy. To harvest muscle 

biopsies the overlying skin was also collected and 

evaluated by histological morphometry of hematoxylin 

eosin (H-E) and immuno-stained on paraffin-embedded 

sections. Analysis of the structural characteristics of 

epidermis, i.e., thickness, morphology of the papillae 

and content of hairs together with some neural and 

inflammatory molecular markers were organized. 

Preliminary results are interesting and stimulate 

additional analyses to better describe skin adaptation to 

this peculiar type of electrical stimulation by surface 

electrodes. Those approaches will offer also new 

opportunities to study adaptation of the skin to other 

physical and pharmacological therapies, e.g., based on 

application of rehabilitation managements through the 

skin,
87

 in particular for pain relief. 

Candidate biomarkers for testing Cayenne pepper 

cataplasm (CPC) treatment for low back pain 

Herbal cataplasms containing rubefacient substances, 

such as Cayenne pepper, are commonly used as natural 

medications to treat painful areas. In this perspective we 

summarize the effects of a 20-min application of a 

mixture of Cayenne pepper and kaolin powder 

cataplasm on healthy subjects. Treatments were 

evaluated by: cold/hot feeling, blood pressure, body 

temperature, skin light touch sensation, two-point 

discrimination, pressure algometry, before and 0/15/30 

min after different concentrations of Cayenne pepper. 

We tested for its safety by measuring changes in 

circulating levels of inflammatory-related biomarkers. 

Results confirmed that 5% concentration CPC did not 

induced a significant increase of circulating 

inflammatory–related biomarkers (Sarabon N et al., 

submitted).
88-92

 Further studies are mandatory to 

confirm evidence-based efficacy of CPC and of the 

involved mechanisms of pain relief. 

Mitochondrial dynamics, molecular pathways 

activation and muscle remodeling after Electrical 

Stimulation in aged human muscle 

Age-related sarcopenia is characterized by a progressive 

loss of muscle mass with decline in specific force. The 

etiology of sarcopenia is multifactorial and underlying 

mechanisms are currently not fully elucidated. Physical 

exercise, including electrical stimulation assisted muscle 

contraction,
93

 is known to have beneficial effects on 

muscle mass and force production.
94,95

 Alterations of 

mitochondrial Ca
2+

 homeostasis regulated by 

mitochondrial calcium uniporter (MCU) have been 

recently shown to affect mice muscle trophism in vivo.
96

 

To understand the relevance of MCU-dependent 

mitochondrial Ca
2+

 uptake in aging and to investigate 

the effect of physical exercise on MCU expression and 

mitochondria dynamics, we analyzed skeletal muscle 

biopsies from 70-year-old subjects 9 weeks trained with 

either neuromuscular electrical stimulation (NMES) or 

leg press. We demonstrated that improved muscle 

function and structure induced by both trainings are 

linked to increased protein levels of MCU.
97

 

Ultrastructural analyses by electron microscopy showed 

remodeling of mitochondrial apparatus in ES-trained 

muscles that is consistent with an adaptation to physical 

exercise, a response likely mediated by an increased 

expression of mitochondrial fusion protein OPA1.
98

 

Altogether these results indicate that the ES-dependent 

physiological effects on skeletal muscle size and force 

are associated with changes in mitochondrial-related 

proteins involved in Ca
2+

 homeostasis and 

mitochondrial shape. Indeed, calcium cycling and 

activation of specific molecular pathways are essential 

in contraction-induced muscle adaptation, being 

important regulators of metabolic and Excitation – 

Transcription Coupling (ETC). An experimental 

protocol was set-up starting from muscle biopsy 

sections that can be obtained before and after a period of 

electrical stimulation on volunteers. By this approach, 

nuclear localization of specific transcription factors such 

as NFAT or PGC1α and phosphorylation level of 

regulative kinases can be compared in a muscle before 

and after training to study activation of related 

pathways. Moreover, it was shown that down-stream 

targets of muscle contraction induced pathways such as 

Ca
2+ 

handling proteins of the Sarcoplasmic Reticulum 

are modulated by ES (Mosole et al., submitted 

manuscript), supporting the conclusion that ES is able to 

promote fiber remodeling in sedentary seniors.
98-102

 

These results support the clinical findings related to 

physical activity in elderly and validate ES when seniors 

can’t or wouldn’t perform volitional exercises.
103

 

Perspectives 

In conclusion, the present information summarizes some 

of the basic concepts and of the evidence-based tools for 

developing further translational muscle research 

activities.
104-113

 Clinically relevant results will ask for 

continuous interests of Basic and Applied Myologists 

and for the support during the next five to ten years of 

granting agencies. We are confident that we will 

proceed steps by steps toward the approval of our 

research projects and clinical trials. This was true in the 

past.
43-60

 It will be hopefully true in the future. All 

together our efforts would end in protocols, devices and 

personalized managements for persons suffering with 

muscle denervation, neuromuscular–related or non–

related pain and for the increasing number of old, older 

and oldest citizens of Europe and beyond. 
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List of acronyms 

BAM – Basic Applied Myology 

BEM – Biology, Engineering, Medicine 

CIR Myo – Interdepartmental Myology Center of the 

University of Padova, Italy 

CPC – Cayenne pepper cataplasm 

CT – Computed Tomography 

DDM – denervated degenerating muscles 

EJTM – European Journal of Translational Myology 

ES – electrical stimulation 

ETC – Excitation–Transcription Coupling 

EU – European Union 

FES – Functional Electrical Stimulation 

h-bFES – home-based Functional Electrical Stimulation 

MCU – mitochondrial calcium uniporter 

NMES – neuromuscular electrical stimulation 

PMD – PaduaMuscleDays 

QMC-CT – Quantitative Muscle Color Computed 

Tomography 

RISE – Use of electrical stimulation to restore standing 

in paraplegics with long-term DDMs 

(QLG5-CT-2001-02191)] 

SCI – Spinal Cord Injury  
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